Hi,
I am using Stata14 for fitting an sem model with a second-order latent variable. In my dataset, there are 9 exogenous variables (V1-V9), which I use to estimate three latent variables (L1, L2, L3), and then the three latent variables are used to estimate a second order order variable, L4. Beyond the measurement part, I also have a structural part in my model in which I try to estimate the effect of some demographic and attitudinal variables (Male Age2 Age3 Educ2 Educ3 Educ4 X1 X2 X3 E1 E2 E3) on L4. The exogenous variables are also on a scale from 1-4. My question is about the range of the estimated latent variables, and how I can go about interpreting the effects of the demographic and attitudinal variables on L4.
When I add the 'standardized' option, I assume the coefficients are in standard deviation, and the latent variables are centered around zero with an SD of 1. So, in that case, coefficient of the 'Male' variable would show the difference in L4 values in standard deviation between female and male respondents. I am not really sure what this means. It is not the most intuitive interpretation. I have three questions about this.
1) I understand the distribution of the latent variables are somewhat abstract anyway, but it would be great if I could get the L4 distributed on a scale from 0-1 instead of from -0.5 to 0.5 or -1 to +1. Is this something possible? Can I add an option to SEM model to get the latent variables to be on a 0-1 scale.
2) When I do not add 'standardized' option, what is the default distribution of the latent variables? And how can I see the distribution of latent variables after sem?
3) Also, I wanted to use margins to get some more meaningful effects, but I could not figure out how to use margins for latent variables. If you can provide any help, I would be grateful.
Data example and the commands I used are below.
I appreciate any help.
Thanks in advance for your time for reading.
I am using Stata14 for fitting an sem model with a second-order latent variable. In my dataset, there are 9 exogenous variables (V1-V9), which I use to estimate three latent variables (L1, L2, L3), and then the three latent variables are used to estimate a second order order variable, L4. Beyond the measurement part, I also have a structural part in my model in which I try to estimate the effect of some demographic and attitudinal variables (Male Age2 Age3 Educ2 Educ3 Educ4 X1 X2 X3 E1 E2 E3) on L4. The exogenous variables are also on a scale from 1-4. My question is about the range of the estimated latent variables, and how I can go about interpreting the effects of the demographic and attitudinal variables on L4.
When I add the 'standardized' option, I assume the coefficients are in standard deviation, and the latent variables are centered around zero with an SD of 1. So, in that case, coefficient of the 'Male' variable would show the difference in L4 values in standard deviation between female and male respondents. I am not really sure what this means. It is not the most intuitive interpretation. I have three questions about this.
1) I understand the distribution of the latent variables are somewhat abstract anyway, but it would be great if I could get the L4 distributed on a scale from 0-1 instead of from -0.5 to 0.5 or -1 to +1. Is this something possible? Can I add an option to SEM model to get the latent variables to be on a 0-1 scale.
2) When I do not add 'standardized' option, what is the default distribution of the latent variables? And how can I see the distribution of latent variables after sem?
3) Also, I wanted to use margins to get some more meaningful effects, but I could not figure out how to use margins for latent variables. If you can provide any help, I would be grateful.
Data example and the commands I used are below.
I appreciate any help.
Thanks in advance for your time for reading.
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(V1 V2 V3 V4 V5 V6 V7 V8 V9) double Male byte(Age2 Age3 Educ2 Educ3 Educ4 X1 X2 X3 E1 E2 E3) 4 2 2 3 1 2 2 2 2 0 0 0 1 0 0 0 1 0 1 0 0 2 1 1 1 3 2 2 1 1 1 0 0 1 0 0 0 0 0 1 0 0 4 4 1 3 4 3 1 1 3 1 1 0 1 0 0 0 1 0 0 0 0 4 3 3 3 3 3 3 2 4 1 1 0 1 0 0 0 0 1 0 1 0 3 2 2 3 3 3 2 1 3 1 1 0 0 0 0 0 1 0 0 1 0 3 2 1 3 3 3 2 1 4 1 0 1 0 1 0 0 1 0 0 0 0 4 2 2 3 4 3 1 2 3 1 1 0 1 0 0 0 1 0 1 0 0 3 2 4 3 3 3 1 1 2 0 0 1 1 0 0 0 0 1 0 0 0 3 2 3 3 3 3 3 2 3 0 0 1 1 0 0 0 1 0 0 1 0 3 1 2 2 1 1 4 3 4 1 0 1 0 1 0 0 1 0 0 1 0 2 1 3 3 3 4 3 1 2 0 1 0 0 1 0 0 1 0 0 0 0 3 2 2 1 3 3 2 2 3 1 0 1 1 0 0 0 1 0 0 1 0 4 2 3 3 3 3 3 3 4 1 1 0 1 0 0 0 1 0 1 0 0 3 2 2 3 2 3 2 1 2 0 1 0 1 0 0 0 1 0 0 0 0 3 3 2 2 3 3 3 2 3 0 1 0 1 0 0 0 1 0 1 0 0 3 2 3 4 3 4 3 2 3 1 1 0 1 0 0 0 1 0 1 0 0 2 2 2 3 2 2 1 1 3 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 2 3 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 3 3 3 3 4 3 2 2 2 1 1 0 0 1 0 0 1 0 1 0 0 3 3 3 3 3 3 2 1 2 0 0 1 0 0 0 1 0 0 0 0 1 3 1 3 3 2 3 3 3 4 0 1 0 0 1 0 1 0 0 0 1 0 3 1 3 3 4 3 1 2 1 0 0 0 0 0 1 0 0 1 0 0 0 3 3 2 3 3 3 2 1 3 0 1 0 0 0 0 1 0 0 0 0 0 3 4 2 4 3 3 1 2 4 1 1 0 0 1 0 0 0 0 0 1 0 3 2 2 3 3 3 2 1 3 0 1 0 0 1 0 0 1 0 1 0 0 3 3 1 3 3 3 4 3 3 0 1 0 1 0 0 0 1 0 0 1 0 4 1 1 3 3 3 1 1 4 1 0 0 0 0 1 0 0 1 0 1 0 3 2 1 4 3 3 1 1 2 0 0 0 1 0 0 0 0 0 1 0 0 1 1 2 1 3 2 1 1 4 1 0 1 0 1 0 0 0 0 0 1 0 3 3 3 3 3 3 2 2 3 0 0 0 1 0 0 0 1 0 0 0 0 4 4 1 3 3 2 3 2 1 1 0 0 0 1 0 0 1 0 0 1 0 3 2 2 3 4 3 4 1 3 1 0 0 0 0 0 0 0 0 0 1 0 4 4 2 3 3 3 2 2 3 1 0 0 0 1 0 0 0 0 0 1 0 3 2 1 3 4 3 1 1 3 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 2 1 3 3 1 1 1 0 1 0 1 0 0 0 0 1 0 0 3 4 2 3 4 4 2 1 3 1 0 1 0 0 0 0 1 0 0 0 1 2 4 2 3 1 3 3 4 3 0 1 0 1 0 0 1 0 0 0 0 1 3 2 3 3 3 4 2 1 3 0 0 1 1 0 0 0 1 0 0 0 0 3 3 2 2 3 2 1 2 2 1 1 0 0 1 0 0 0 0 0 0 0 4 2 4 3 2 2 3 2 1 1 1 0 1 0 0 0 0 1 1 0 0 4 4 2 3 4 4 4 3 4 0 0 1 1 0 0 0 0 1 0 1 0 1 1 3 1 2 2 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 2 2 2 2 4 3 2 2 2 0 1 0 0 1 0 0 0 0 0 0 0 3 2 2 3 2 3 2 1 1 1 0 0 0 0 0 0 0 1 0 1 0 4 4 2 3 4 4 2 1 4 0 1 0 0 0 0 0 1 0 0 1 0 4 2 2 3 2 3 2 2 4 0 0 1 0 0 0 0 1 0 1 0 0 3 1 1 2 3 3 1 1 2 0 0 0 1 0 0 0 0 0 0 0 0 3 2 2 2 3 3 2 1 3 0 0 0 0 1 0 0 0 0 0 0 0 4 1 1 2 3 3 1 2 4 1 1 0 1 0 0 1 0 0 0 1 0 3 2 2 3 3 4 1 2 3 1 0 1 0 1 0 0 0 1 0 0 0 3 2 1 1 2 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 2 1 3 3 3 2 2 1 3 1 0 0 0 1 0 0 0 0 0 1 0 3 2 3 3 3 4 2 2 4 1 0 1 0 0 1 0 0 0 0 0 0 3 2 2 3 3 3 1 1 3 1 0 1 0 0 1 0 0 0 0 1 0 3 1 1 3 4 4 2 2 2 0 0 0 0 1 0 0 0 1 0 0 0 3 2 1 1 3 1 2 3 1 1 1 0 0 0 0 0 1 0 0 0 1 4 3 3 3 3 3 2 2 4 0 1 0 1 0 0 0 0 0 0 1 0 3 1 1 1 2 1 2 1 1 1 1 0 0 0 1 0 0 1 0 0 1 3 2 2 3 4 4 1 2 3 1 0 1 0 1 0 0 1 0 0 0 0 4 3 2 3 4 3 2 3 3 0 1 0 1 0 0 0 1 0 1 0 0 4 2 3 2 4 3 4 1 3 1 0 1 0 0 1 0 0 0 1 0 0 3 3 3 3 3 3 3 2 2 0 0 0 0 0 0 0 1 0 0 0 0 2 1 1 1 3 1 2 1 1 0 0 0 0 1 0 0 0 0 1 0 0 3 3 2 2 3 2 4 3 4 0 0 1 1 0 0 0 1 0 1 0 0 3 2 3 3 3 3 2 1 3 0 0 1 1 0 0 1 0 0 0 0 0 2 3 1 3 3 4 1 1 3 1 0 1 0 1 0 0 0 0 1 0 0 4 4 4 4 4 4 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 3 2 3 1 2 1 1 1 3 1 0 1 1 0 0 0 0 1 1 0 0 2 2 2 2 4 4 2 2 4 0 0 1 1 0 0 0 0 1 1 0 0 3 3 2 3 1 3 2 1 2 1 0 0 1 0 0 0 1 0 1 0 0 4 3 2 4 4 4 1 2 3 1 0 1 1 0 0 0 1 0 1 0 0 4 3 3 3 4 3 2 1 4 0 1 0 1 0 0 0 1 0 0 0 0 3 3 2 2 2 3 2 1 2 1 0 1 0 0 1 0 1 0 0 1 0 3 3 2 3 3 3 4 1 2 1 0 1 0 0 0 0 1 0 1 0 0 4 2 4 3 3 4 2 1 3 0 0 0 0 1 0 0 0 1 1 0 0 3 1 3 2 3 3 4 1 4 0 0 1 0 0 1 0 1 0 1 0 0 3 2 2 3 3 3 2 2 3 0 1 0 1 0 0 0 1 0 1 0 0 3 3 4 3 3 2 2 1 2 1 0 1 0 1 0 0 1 0 1 0 0 3 3 1 2 4 2 2 1 4 1 1 0 1 0 0 0 1 0 0 1 0 4 4 3 2 4 3 2 2 3 0 1 0 0 1 0 0 1 0 1 0 0 4 1 2 3 2 4 4 2 4 1 0 1 0 1 0 0 1 0 0 0 0 3 2 2 2 3 3 2 1 1 0 1 0 0 0 0 0 1 0 1 0 0 2 1 1 2 3 3 4 2 3 0 1 0 0 1 0 0 1 0 0 0 0 1 1 3 2 3 2 3 2 2 1 0 1 1 0 0 0 1 0 1 0 0 3 3 2 2 3 3 3 1 2 0 0 1 1 0 0 0 1 0 1 0 0 4 3 3 3 3 3 4 2 4 1 1 0 0 0 0 0 1 0 0 0 0 4 3 4 1 3 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 3 3 2 3 4 4 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 3 3 2 3 4 0 0 1 0 1 0 0 1 0 0 0 1 3 2 2 1 2 2 1 1 2 1 1 0 0 0 1 0 0 0 0 1 0 4 2 2 2 3 4 1 1 3 1 1 0 1 0 0 0 0 0 1 0 0 3 3 3 3 3 3 2 2 2 0 1 0 0 0 0 1 0 0 0 0 1 2 2 1 1 2 2 3 1 1 0 0 0 1 0 0 0 0 1 0 0 0 3 1 1 3 3 3 3 3 4 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 3 4 3 2 1 4 0 0 1 0 0 0 1 0 0 0 0 0 4 1 1 1 4 1 1 1 4 1 0 0 0 1 0 0 0 0 0 0 0 3 2 2 3 3 3 2 1 3 1 1 0 0 1 0 0 1 0 0 1 0 3 1 2 3 4 4 2 1 3 0 0 0 0 1 0 0 1 0 0 0 0 3 3 1 4 4 3 4 2 4 0 0 1 0 0 0 1 0 0 1 0 0 3 3 3 3 3 3 2 2 3 1 0 1 0 0 0 1 0 0 1 0 0 3 3 3 3 3 3 2 2 3 1 0 1 0 0 0 1 0 0 1 0 0 3 1 2 1 3 2 1 1 4 1 0 1 1 0 0 0 0 0 1 0 0 2 2 2 2 3 2 3 2 1 1 1 0 0 0 0 0 1 0 1 0 0 4 4 4 3 4 4 2 1 4 1 0 0 0 0 0 0 0 1 1 0 0 3 3 3 3 3 3 2 2 3 1 1 0 0 1 0 1 0 0 1 0 0 3 1 1 3 3 1 1 2 1 1 0 0 1 0 0 0 1 0 0 0 0 3 3 3 3 4 3 3 2 3 1 0 1 0 1 0 0 1 0 1 0 0 3 2 2 2 3 3 3 2 2 1 1 0 0 0 1 0 1 0 1 0 0 4 4 3 3 4 3 4 2 4 1 0 1 1 0 0 0 1 0 0 0 1 3 3 2 2 3 3 4 2 4 0 0 1 0 1 0 0 1 0 1 0 0 4 3 2 3 4 4 1 1 3 1 0 0 0 1 0 1 0 0 0 0 0 3 3 3 3 3 3 3 1 3 1 1 0 0 1 0 0 0 1 1 0 0 2 1 2 3 2 3 1 1 2 0 0 1 0 0 1 0 0 1 1 0 0 4 4 3 4 4 3 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 4 3 4 3 4 3 4 2 4 0 0 1 0 0 0 1 0 0 1 0 0 3 1 1 2 4 3 2 2 3 0 1 0 0 0 0 0 1 0 0 1 0 2 2 3 2 3 2 3 2 2 1 0 0 1 0 0 0 1 0 1 0 0 3 2 2 3 3 3 3 2 3 0 0 0 0 1 0 0 0 1 1 0 0 3 1 4 3 4 4 4 1 4 1 1 0 0 1 0 0 1 0 1 0 0 3 1 3 3 3 2 1 1 2 1 0 1 0 1 0 0 0 0 0 1 0 4 3 4 2 3 4 4 3 3 0 0 1 0 0 0 0 1 0 0 1 0 3 2 3 2 4 4 1 1 2 1 0 1 1 0 0 0 1 0 1 0 0 3 3 4 2 4 3 3 2 4 0 0 1 1 0 0 0 1 0 0 1 0 3 2 2 3 1 3 2 2 2 1 0 1 0 1 0 0 1 0 0 1 0 1 1 3 1 4 4 2 1 2 1 1 0 0 0 0 0 0 0 0 0 0 3 2 3 3 3 3 2 2 3 0 0 0 1 0 0 0 1 0 0 0 0 3 3 3 3 3 3 2 1 2 1 1 0 0 0 0 1 0 0 0 0 0 3 1 1 4 4 2 2 1 3 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 2 1 2 2 2 1 1 0 0 1 0 0 1 0 1 0 0 4 3 2 3 4 3 1 1 2 0 0 1 0 0 0 0 1 0 1 0 0 2 2 2 1 3 3 1 1 2 0 1 0 0 0 1 0 0 0 1 0 0 3 2 1 3 4 2 2 2 3 1 0 1 1 0 0 0 1 0 1 0 0 3 1 2 1 3 2 4 1 1 1 1 0 0 1 0 0 0 1 0 1 0 3 3 3 2 4 4 3 1 3 1 0 1 1 0 0 0 1 0 1 0 0 1 1 1 2 2 3 2 2 3 1 1 0 0 0 0 0 1 0 1 0 0 3 2 2 2 3 3 3 1 2 1 0 1 0 0 0 0 0 0 1 0 0 3 3 2 2 3 2 2 3 4 1 1 0 0 0 0 0 1 0 0 1 0 2 1 2 3 3 4 4 2 2 0 0 0 0 1 0 0 1 0 1 0 0 4 2 4 3 4 2 2 2 2 1 1 0 1 0 0 0 1 0 0 0 0 3 2 2 3 3 1 2 1 3 1 0 1 1 0 0 0 1 0 1 0 0 3 2 2 3 3 3 2 2 2 1 0 0 1 0 0 0 1 0 0 1 0 3 2 2 3 3 3 2 1 3 0 0 1 0 0 0 1 0 0 0 0 0 2 1 1 1 3 3 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 3 2 2 3 3 4 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 3 2 2 3 3 3 4 4 3 0 1 0 0 0 0 0 1 0 0 1 0 1 1 4 3 1 2 4 1 4 0 0 1 0 0 1 0 1 0 0 1 0 3 2 3 3 3 4 3 3 4 1 0 1 0 0 1 0 1 0 0 0 0 2 1 1 1 3 3 2 1 3 0 0 1 1 0 0 0 0 0 0 0 0 2 2 2 2 2 3 4 3 3 1 1 0 0 1 0 1 0 0 0 1 0 3 2 3 3 3 3 1 1 3 1 0 1 1 0 0 0 1 0 0 0 0 3 2 3 3 4 4 2 2 2 0 0 0 1 0 0 0 0 1 1 0 0 4 1 4 2 4 4 2 4 3 0 1 0 1 0 0 0 1 0 0 0 1 2 2 2 3 3 3 2 1 2 0 0 0 1 0 0 1 0 0 0 0 0 4 3 3 4 4 3 1 2 3 1 0 0 0 1 0 0 0 1 1 0 0 3 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 3 1 1 1 1 3 2 1 1 1 0 0 0 0 1 0 1 0 0 0 0 3 2 1 3 3 3 2 1 3 0 0 1 1 0 0 0 1 0 1 0 0 4 2 1 4 4 3 2 2 1 0 0 1 0 0 1 0 0 0 0 1 0 3 1 2 3 3 3 2 1 3 1 0 1 0 0 0 0 1 0 1 0 0 4 2 2 1 3 3 1 2 1 1 0 0 1 0 0 0 1 0 1 0 0 4 4 4 4 4 4 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 3 3 4 3 3 3 2 1 4 1 0 1 0 1 0 0 0 0 1 0 0 2 1 2 3 3 3 2 2 2 0 0 0 0 1 0 0 1 0 0 0 0 2 1 2 3 3 3 2 1 2 0 0 1 0 1 0 0 0 1 1 0 0 3 2 1 2 3 4 1 1 4 1 0 1 0 0 1 0 0 1 1 0 0 1 1 1 1 4 1 1 1 4 1 0 0 0 0 0 0 0 1 0 0 1 3 2 2 2 4 3 2 2 3 0 1 0 0 0 0 1 0 0 1 0 0 3 2 2 2 3 3 2 1 2 1 0 0 0 1 0 0 0 0 1 0 0 3 2 3 3 3 3 4 2 3 1 0 1 1 0 0 0 1 0 1 0 0 3 2 2 3 3 3 2 1 3 1 0 0 1 0 0 1 0 0 0 0 0 2 2 2 3 3 3 1 1 3 1 0 1 1 0 0 0 0 1 1 0 0 3 1 2 3 2 3 1 1 2 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 2 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 4 3 3 2 4 3 2 1 3 1 0 1 1 0 0 0 1 0 0 0 0 3 2 2 1 2 4 4 4 4 0 0 0 0 0 0 0 0 1 1 0 0 3 2 1 1 4 1 3 1 3 1 0 1 1 0 0 0 0 0 0 0 1 4 3 2 3 4 3 2 2 3 0 0 1 0 0 1 0 1 0 1 0 0 4 3 2 2 4 1 1 1 3 1 0 0 0 1 0 0 0 0 0 0 0 3 1 1 1 1 1 1 1 3 1 0 1 0 1 0 0 0 0 0 0 0 3 3 4 3 3 4 2 2 1 0 0 0 1 0 0 0 0 1 1 0 0 3 2 2 3 4 4 2 1 3 0 0 0 0 0 0 0 1 0 0 0 0 3 2 2 3 3 3 2 1 4 1 0 1 0 0 0 1 0 0 0 0 0 3 1 2 3 4 3 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 3 2 3 4 4 4 2 1 4 1 1 0 0 1 0 0 0 1 1 0 0 2 3 2 3 3 2 4 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1 1 2 3 3 3 2 1 4 0 1 0 1 0 0 0 1 0 0 1 0 3 3 3 3 4 3 1 2 3 1 1 0 0 0 0 0 1 0 1 0 0 3 2 3 3 3 3 2 3 3 0 1 0 0 1 0 0 0 1 0 0 0 3 3 2 3 4 3 4 2 2 0 0 1 1 0 0 0 1 0 0 1 0 4 4 4 3 3 4 4 4 4 0 1 0 1 0 0 0 1 0 0 1 0 3 3 2 4 4 3 1 2 3 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1 2 1 4 4 2 3 0 1 0 1 0 0 0 1 0 1 0 0 3 1 1 3 3 3 2 2 3 0 0 0 0 0 0 0 1 0 0 1 0 2 2 1 3 4 3 2 1 4 0 0 1 0 0 0 0 1 0 0 0 0 4 2 2 4 4 4 1 2 4 1 0 1 0 0 1 0 0 0 0 0 0 3 2 2 3 3 3 2 1 4 0 0 1 1 0 0 0 1 0 0 0 0 2 2 2 2 1 2 2 2 2 0 0 0 0 0 0 0 1 0 1 0 0 3 2 3 3 4 3 2 1 2 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 2 2 1 1 2 1 0 0 0 0 1 0 0 0 0 0 0 1 1 2 3 4 3 2 4 4 0 0 1 1 0 0 0 1 0 0 1 0 end label values Male Male label def Male 0 "0 Female", modify label def Male 1 "1 Male", modify
Code:
sem (L1 -> V1 V2 V3) /// (L2 -> V4 V5 V6) /// (L3 -> V7 V8 V9) /// (L4 -> L1 L2 L3) ////// (L4<- Male Age2 Age3 Educ2 Educ3 Educ4 /// X1 X2 X3 E1 E2 E3 /// , difficult latent(L1 L2 L3 L4) nocapslatent
Code:
sem (L1 -> V1 V2 V3) /// (L2 -> V4 V5 V6) /// (L3 -> V7 V8 V9) /// (L4 -> L1 L2 L3) ////// (L4<- Male Age2 Age3 Educ2 Educ3 Educ4 /// X1 X2 X3 E1 E2 E3 /// , difficult latent(L1 L2 L3 L4) nocapslatent standardized
Comment