Prof Ford, They are control variables.
Code:
. reghdfe ln_labor_productivity_w c.immi_sh#i.sector logsize lavg_firm_age lage, a( year id) cl(id) (dropped 50256 singleton observations) (MWFE estimator converged in 7 iterations) HDFE Linear regression Number of obs = 1,464,334 Absorbing 2 HDFE groups F( 11, 237899) = 189.63 Statistics robust to heteroskedasticity Prob > F = 0.0000 R-squared = 0.7017 Adj R-squared = 0.6438 Within R-sq. = 0.0039 Number of clusters (id) = 237,900 Root MSE = 0.5282 (Std. Err. adjusted for 237,900 clusters in id) ---------------------------------------------------------------------------------- | Robust ln_labor_produ~w | Coef. Std. Err. t P>|t| [95% Conf. Interval] -----------------+---------------------------------------------------------------- sector#c.immi_sh | 3 | .0024782 .0353288 0.07 0.944 -.0667652 .0717217 6 | -.0420726 .0253802 -1.66 0.097 -.0918171 .0076719 7 | -.0431337 .0218272 -1.98 0.048 -.0859144 -.000353 9 | .0524663 .0204169 2.57 0.010 .0124497 .0924829 10 | -.0788029 .0826174 -0.95 0.340 -.2407308 .083125 11 | .0017283 .0531121 0.03 0.974 -.10237 .1058267 12 | -.0441454 .0353662 -1.25 0.212 -.1134622 .0251714 13 | -.0171878 .0400251 -0.43 0.668 -.0956359 .0612603 | logsize | -.0760921 .0023878 -31.87 0.000 -.0807722 -.071412 lavg_firm_age | .09495 .0026204 36.23 0.000 .089814 .100086 lage | -.0155982 .0089625 -1.74 0.082 -.0331645 .0019681 _cons | 9.569129 .0340675 280.89 0.000 9.502357 9.6359 ---------------------------------------------------------------------------------- Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| year | 10 1 9 | id | 237900 237900 0 *| -----------------------------------------------------+ * = FE nested within cluster; treated as redundant for DoF computatio
Comment