Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • #16
    Yes. The first-differencing deals with firm FE (0's the means).

    Year FE will 0 mean the variables for each year.

    I think the "td" option may do the time fixed effects.

    Comment


    • #17
      Interesting, I think you are correct. After specifying td in my model, it leads to the following results;

      Code:
      . pvar FP stdCSR stdCSI, lags(2) exog(FS FL ROA AI RDI) td instlags(1/3) overid
      
      Panel vector autoregresssion
      
      
      
      GMM Estimation
      
      Final GMM Criterion Q(b) =    .00347
      Initial weight matrix: Identity
      GMM weight matrix:     Robust
                                                         No. of obs      =      3898
                                                         No. of panels   =       997
                                                         Ave. no. of T   =     3.910
      
      
      ------------------------------------------------------------------------------
                   | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
      -------------+----------------------------------------------------------------
      FP           |
                FP |
               L1. |   .2596992   .1701477     1.53   0.127    -.0737841    .5931826
               L2. |  -.0177389   .0474393    -0.37   0.708    -.1107183    .0752404
                   |
            stdCSR |
               L1. |    -.09184   .0539606    -1.70   0.089    -.1976008    .0139208
               L2. |  -.0621837   .0301958    -2.06   0.039    -.1213665    -.003001
                   |
            stdCSI |
               L1. |     .06457   .0473411     1.36   0.173    -.0282168    .1573567
               L2. |   .0183179    .023301     0.79   0.432    -.0273513    .0639871
                   |
                FS |   -1.20848   .8741295    -1.38   0.167    -2.921742    .5047827
                FL |  -.1987473   1.006738    -0.20   0.844    -2.171918    1.774423
               ROA |  -1.582318   .6832335    -2.32   0.021    -2.921431   -.2432054
                AI |   1.009488   .5874366     1.72   0.086    -.1418668    2.160842
               RDI |  -.0186685   .0142599    -1.31   0.190    -.0466173    .0092804
      -------------+----------------------------------------------------------------
      stdCSR       |
                FP |
               L1. |   .0031596   .0581674     0.05   0.957    -.1108464    .1171656
               L2. |  -.0123654   .0172323    -0.72   0.473    -.0461402    .0214093
                   |
            stdCSR |
               L1. |   .5791404   .0605278     9.57   0.000      .460508    .6977727
               L2. |   .1529949   .0491522     3.11   0.002     .0566584    .2493315
                   |
            stdCSI |
               L1. |  -.1107846    .057075    -1.94   0.052    -.2226496    .0010804
               L2. |   .0561206   .0326719     1.72   0.086    -.0079151    .1201563
                   |
                FS |  -.2674409   .3376316    -0.79   0.428    -.9291867    .3943048
                FL |  -.2290882   .7379384    -0.31   0.756    -1.675421    1.217244
               ROA |   .2910557   .2420082     1.20   0.229    -.1832717    .7653831
                AI |  -.6433749   .2910268    -2.21   0.027    -1.213777   -.0729728
               RDI |   .0131324   .0066843     1.96   0.049     .0000313    .0262334
      -------------+----------------------------------------------------------------
      stdCSI       |
                FP |
               L1. |   .0846545   .0757073     1.12   0.263    -.0637292    .2330382
               L2. |   .0006962   .0228989     0.03   0.976    -.0441847    .0455772
                   |
            stdCSR |
               L1. |   .0045206   .0491892     0.09   0.927    -.0918884    .1009296
               L2. |   .0050363   .0407154     0.12   0.902    -.0747644    .0848371
                   |
            stdCSI |
               L1. |   .3250604   .1151785     2.82   0.005     .0993146    .5508062
               L2. |   .1818229   .0672496     2.70   0.007     .0500161    .3136297
                   |
                FS |   .0829144    .398459     0.21   0.835    -.6980508    .8638796
                FL |   .7134196   .8530795     0.84   0.403    -.9585856    2.385425
               ROA |   .2815334       .254     1.11   0.268    -.2162974    .7793643
                AI |  -.2938101   .3433918    -0.86   0.392    -.9668457    .3792255
               RDI |   .0071632   .0078401     0.91   0.361     -.008203    .0225294
      ------------------------------------------------------------------------------
      Instruments : l(1/3).(FP stdCSR stdCSI) FS FL ROA AI RDI
      
      
      
      Test of overidentifying restriction: 
        Hansen's J chi2(9) = 13.519271 (p = 0.140)
      
      . estimates store PVARmodel 
      
      . pvarstable
      
         Eigenvalue stability condition
      
        +----------------------------------+
        |      Eigenvalue      |           |
        |   Real     Imaginary |  Modulus  |
        |----------------------+-----------|
        |  .7819005          0 |  .7819005 |
        |  .6301147          0 |  .6301147 |
        | -.3012884          0 |  .3012884 |
        | -.1923009          0 |  .1923009 |
        |   .122737  -.0844876 |  .1490052 |
        |   .122737   .0844876 |  .1490052 |
        +----------------------------------+
      
         All the eigenvalues lie inside the unit circle.
         pVAR satisfies stability condition.
      
      . pvargranger
      
        panel VAR-Granger causality Wald test
          Ho: Excluded variable does not Granger-cause Equation variable
          Ha: Excluded variable Granger-causes Equation variable
      
        +------------------------------------------------------+
        |  Equation \ Excluded |    chi2     df   Prob > chi2  |
        |----------------------+-------------------------------|
        |FP                    |                               |
        |               stdCSR |      5.216    2        0.074  |
        |               stdCSI |      2.029    2        0.362  |
        |                  ALL |      5.448    4        0.244  |
        |----------------------+-------------------------------|
        |stdCSR                |                               |
        |                   FP |      0.961    2        0.618  |
        |               stdCSI |      9.568    2        0.008  |
        |                  ALL |      9.924    4        0.042  |
        |----------------------+-------------------------------|
        |stdCSI                |                               |
        |                   FP |      2.222    2        0.329  |
        |               stdCSR |      0.018    2        0.991  |
        |                  ALL |      2.233    4        0.693  |
        +------------------------------------------------------+
      While not all predicted relations appear significant (which is fine), it has a satisfactory J p-value and is stable. I believe this is the model I need to report on.

      I want to thank you so much for your help these past weeks, I highly appreciate it!

      Comment


      • #18
        You've got a little love between CSR and FP. Looks good.

        Comment


        • #19
          Originally posted by George Ford View Post
          You've got a little love between CSR and FP. Looks good.
          I continued to use the model as is above, so thanks once again. I do have one last question, how do I figure out the total number of observations I lose due to lagging and instrumenting GMM? My dataset observation count using the count command is 34,966. I know one of my variables (Advertising Intensity) only has 13,143 observations but my final PVAR model has 3,989 observations. I want to include this in my paper for transparency. Does that mean I lose 31,068 observations due to lagging and instrumenting, or do I already lose observations due to this variable? I'm unsure how to approach this, do you have any insights?

          Comment

          Working...
          X