Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Help with Logit model specification (pooled, panel FE, panel RE)

    Dear all,

    I am using longitudinal data from the SHARE survey (Survey of Health, Ageing and Retirement in Europe) to run a model on the covariates of transition from work into retirement (for a sample aged 50yo and over). Covariates include: one's risk of poverty in wave t-1, education, sex, age groups, equivalised household size, self-reported health status, work type, marital status, and extra working household member.

    My co-authors and I thought it best to estimate a binary choice model like Logit model instead of a linear probability model. We start with a simple reg, estat hettest (heteroskedasticity confirmed), followed by logit ..., vce(cl mergeid).

    Next, we estimate conditional xtlogit ..., fe and xtlogit ..., re, followed by hausman fe re. As p-value is zero, the panel Logit with FE would be more appropriate. Note that all models include wave- and country-fixed effects. Results and dataex follow after the questions.

    My questions are:
    1. As hausman fe re does not allow for robust nor clustered S.E., I am afraid that the results might not be precise in my case. Being this an unbalanced panel, I cannot easily implement the "robust Hausman test" proposed by Cameron & Trivedi. What would you recommend? For instance, coefficients of pov_risk_t_1, a dependent var of interest, change significantly from one model to another.
    2. In the xtlogit ..., fe results, educ and male variables are omitted, along with all country-FE. In principle, I understand why this happens, but I am puzzled about not being able to include country-FE with individual FE. Also, if I stick to xtlogit ..., fe, I would end up with 13,000 obs (versus 43,000 with xtlogit ..., re). How can I take this constraint into consideration?
    If you need any further info, please let me know. It is the first time I am dealing with non-linear models and I am struggling to put theory into practice. Any comments and/or feedback are very much welcome!

    Code:
    global cov_pov_risk2 pov_risk_t_1 educ male i.age_grp hhsize_eqh_sr sphus_poor i.work_type i.marital_status hhmemb_work 
    
    *** OLS
    reg trans $cov_pov_risk2 i.wave i.country if trans==0 | trans==1
    rvfplot
    estat hettest //p-value=0, can reject null of homoskedasticity
    
    reg trans $cov_pov_risk2 i.wave i.country if trans==0 | trans==1, vce(cl mergeid)
    eststo ols_trans_all
    capture drop insample
    gen insample=1 if e(sample)==1
    
    *** POOLED LOGIT
    logit trans $cov_pov_risk2 i.wave i.country if insample==1, vce(cl mergeid)
    margins, dydx($cov_pov_risk2) post
    outreg2 using "$result/transition_25-04-24.doc", replace ctitle(Pooled OLS) keep($cov_pov_risk2) label dec(3) pdec(3) addtext(Wave FE, YES, Country FE, YES)
    
    *** HAUSMAN TEST
    
    ** PANEL LOGIT, FE
    xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, fe
    est sto fe
    
    ** PANEL LOGIT, RE
    xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, re
    est sto re
    
    hausman fe re //sigmamore option not allowed (?)
    Code:
                     ---- Coefficients ----
                 |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
                 |       fe           re         Difference       Std. err.
    -------------+----------------------------------------------------------------
    pov_risk_t_1 |   -.6016172    -.1795393       -.4220778        .2444998
         age_grp |
              2  |   -.7621384     1.532987       -2.295125        .5458784
              3  |    .7511475     3.644596       -2.893449        .7114418
              4  |    2.048137     5.536591       -3.488453         .850413
              5  |    .2238864     5.504902       -5.281015        .9802493
              6  |   -2.020909     5.611854       -7.632763        1.162086
    hhsize_eqh~r |   -1.527002    -.6933263       -.8336755        .7235039
      sphus_poor |   -.0086558     .2115868       -.2202427        .2288058
       work_type |
              2  |   -.7272602    -.0266944       -.7005657        .5069954
              3  |   -.1223119    -.4053891        .2830772        .6502483
    marital_st~s |
              4  |    .8187897     .5042493        .3145404        2.837579
              5  |    1.590961     .6787202        .9122412        .7105594
     hhmemb_work |    7.846142     3.672941        4.173201        .4753171
            wave |
              4  |    4.198946     .3118012        3.887145        .5569936
              5  |    7.219535    -.5716207        7.791155        .6539124
              6  |    9.880225    -.7593481        10.63957        .7250568
              7  |    12.43963    -.7975258        13.23716        .7884817
              8  |    15.73511    -.6655215        16.40063        .8880205
    ------------------------------------------------------------------------------
                            b = Consistent under H0 and Ha; obtained from xtlogit.
             B = Inconsistent under Ha, efficient under H0; obtained from xtlogit.
    
    Test of H0: Difference in coefficients not systematic
    
       chi2(18) = (b-B)'[(V_b-V_B)^(-1)](b-B)
                = 633.49
    Prob > chi2 = 0.0000
    Code:
    . xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, fe
    note: multiple positive outcomes within groups encountered.
    note: 17,818 groups (30,342 obs) omitted because of all positive or
          all negative outcomes.
    note: educ omitted because of no within-group variance.
    note: male omitted because of no within-group variance.
    note: 12.country omitted because of no within-group variance.
    note: 13.country omitted because of no within-group variance.
    note: 14.country omitted because of no within-group variance.
    note: 15.country omitted because of no within-group variance.
    note: 16.country omitted because of no within-group variance.
    note: 17.country omitted because of no within-group variance.
    note: 18.country omitted because of no within-group variance.
    note: 19.country omitted because of no within-group variance.
    note: 23.country omitted because of no within-group variance.
    note: 28.country omitted because of no within-group variance.
    note: 29.country omitted because of no within-group variance.
    note: 31.country omitted because of no within-group variance.
    note: 32.country omitted because of no within-group variance.
    note: 33.country omitted because of no within-group variance.
    note: 34.country omitted because of no within-group variance.
    note: 35.country omitted because of no within-group variance.
    note: 47.country omitted because of no within-group variance.
    note: 48.country omitted because of no within-group variance.
    note: 51.country omitted because of no within-group variance.
    note: 53.country omitted because of no within-group variance.
    note: 55.country omitted because of no within-group variance.
    note: 57.country omitted because of no within-group variance.
    note: 59.country omitted because of no within-group variance.
    note: 61.country omitted because of no within-group variance.
    note: 63.country omitted because of no within-group variance.
    
    Iteration 0:  Log likelihood = -884.53166  
    Iteration 1:  Log likelihood = -457.83119  
    Iteration 2:  Log likelihood = -368.83669  
    Iteration 3:  Log likelihood = -365.37058  
    Iteration 4:  Log likelihood = -365.34699  
    Iteration 5:  Log likelihood = -365.34698  
    
    Conditional fixed-effects logistic regression       Number of obs    =  12,985
    Group variable: panel                               Number of groups =   4,637
    
                                                        Obs per group:
                                                                     min =       2
                                                                     avg =     2.8
                                                                     max =       6
    
                                                        LR chi2(18)      = 8344.49
    Log likelihood = -365.34698                         Prob > chi2      =  0.0000
    
    --------------------------------------------------------------------------------------------
                         trans | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    ---------------------------+----------------------------------------------------------------
                  pov_risk_t_1 |  -.6016172   .2503352    -2.40   0.016    -1.092265   -.1109691
                          educ |          0  (omitted)
                          male |          0  (omitted)
                               |
                       age_grp |
                      55-59yo  |  -.7621384   .5653121    -1.35   0.178     -1.87013    .3458531
                      60-64yo  |   .7511475   .7270053     1.03   0.302    -.6737567    2.176052
                      65-69yo  |   2.048137   .8667529     2.36   0.018     .3493329    3.746942
                      70-74yo  |   .2238864   .9984175     0.22   0.823    -1.732976    2.180749
                        75+yo  |  -2.020909   1.181374    -1.71   0.087     -4.33636    .2945416
                               |
                 hhsize_eqh_sr |  -1.527002   .7280251    -2.10   0.036    -2.953905   -.1000989
                    sphus_poor |  -.0086558    .233234    -0.04   0.970    -.4657862    .4484745
                               |
                     work_type |
    2. Public sector employee  |  -.7272602   .5089185    -1.43   0.153    -1.724722    .2702018
             3. Self-employed  |  -.1223119    .652457    -0.19   0.851    -1.401104     1.15648
                               |
                marital_status |
             2. Never married  |   .8187897   2.838588     0.29   0.773    -4.744741     6.38232
          3. Divorced/widowed  |   1.590961    .712656     2.23   0.026     .1941812    2.987742
                               |
                   hhmemb_work |   7.846142   .4802585    16.34   0.000     6.904853    8.787431
                               |
                          wave |
             Wave 4 (2011/12)  |   4.198946   .5628121     7.46   0.000     3.095854    5.302037
                Wave 5 (2013)  |   7.219535   .6587072    10.96   0.000     5.928492    8.510577
                Wave 6 (2015)  |   9.880225   .7291923    13.55   0.000     8.451035    11.30942
             Wave 7 (2017/18)  |   12.43963   .7921748    15.70   0.000       10.887    13.99226
             Wave 8 (2019/20)  |   15.73511    .891713    17.65   0.000     13.98739    17.48284
                               |
                       country |
                      Germany  |          0  (omitted)
                       Sweden  |          0  (omitted)
                  Netherlands  |          0  (omitted)
                        Spain  |          0  (omitted)
                        Italy  |          0  (omitted)
                       France  |          0  (omitted)
                      Denmark  |          0  (omitted)
                       Greece  |          0  (omitted)
                      Belgium  |          0  (omitted)
               Czech Republic  |          0  (omitted)
                       Poland  |          0  (omitted)
                   Luxembourg  |          0  (omitted)
                      Hungary  |          0  (empty)
                     Portugal  |          0  (empty)
                     Slovenia  |          0  (omitted)
                      Estonia  |          0  (omitted)
                      Croatia  |          0  (omitted)
                    Lithuania  |          0  (empty)
                     Bulgaria  |          0  (empty)
                       Cyprus  |          0  (empty)
                      Finland  |          0  (empty)
                       Latvia  |          0  (empty)
                        Malta  |          0  (empty)
                      Romania  |          0  (empty)
                     Slovakia  |          0  (empty)
    --------------------------------------------------------------------------------------------
    Code:
    . xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, re //LR test of rho=0: chibar2(01
    > ) = 2.27
    note: 59.country != 0 predicts failure perfectly;
          59.country omitted and 18 obs not used.
    
    
    Fitting comparison model:
    
    Iteration 0:  Log likelihood = -21005.955  
    Iteration 1:  Log likelihood = -12053.908  
    Iteration 2:  Log likelihood = -10779.721  
    Iteration 3:  Log likelihood = -10584.603  
    Iteration 4:  Log likelihood = -10579.394  
    Iteration 5:  Log likelihood = -10579.358  
    Iteration 6:  Log likelihood = -10579.358  
    
    Fitting full model:
    
    tau =  0.0    Log likelihood = -10579.358
    tau =  0.1    Log likelihood = -10580.232
    
    Iteration 0:  Log likelihood = -10580.232  
    Iteration 1:  Log likelihood = -10578.224  
    Iteration 2:  Log likelihood = -10578.222  
    Iteration 3:  Log likelihood = -10578.222  
    
    Random-effects logistic regression                  Number of obs    =  43,309
    Group variable: panel                               Number of groups =  22,437
    
    Random effects u_i ~ Gaussian                       Obs per group:
                                                                     min =       1
                                                                     avg =     1.9
                                                                     max =       6
    
    Integration method: mvaghermite                     Integration pts. =      12
    
                                                        Wald chi2(44)    = 3530.49
    Log likelihood = -10578.222                         Prob > chi2      =  0.0000
    
    --------------------------------------------------------------------------------------------
                         trans | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    ---------------------------+----------------------------------------------------------------
                  pov_risk_t_1 |  -.1795393   .0537363    -3.34   0.001    -.2848605   -.0742182
                          educ |   -.045703   .0050548    -9.04   0.000    -.0556102   -.0357958
                          male |   .0069455   .0383919     0.18   0.856    -.0683012    .0821921
                               |
                       age_grp |
                      55-59yo  |   1.532987   .1469509    10.43   0.000     1.244968    1.821005
                      60-64yo  |   3.644596   .1496238    24.36   0.000     3.351339    3.937853
                      65-69yo  |   5.536591   .1675063    33.05   0.000     5.208284    5.864897
                      70-74yo  |   5.504902   .1896016    29.03   0.000     5.133289    5.876514
                        75+yo  |   5.611854   .2126046    26.40   0.000     5.195157    6.028551
                               |
                 hhsize_eqh_sr |  -.6933263   .0810102    -8.56   0.000    -.8521035   -.5345491
                    sphus_poor |   .2115868   .0452328     4.68   0.000     .1229321    .3002416
                               |
                     work_type |
    2. Public sector employee  |  -.0266944   .0442009    -0.60   0.546    -.1133267    .0599378
             3. Self-employed  |  -.4053891   .0536401    -7.56   0.000    -.5105218   -.3002564
                               |
                marital_status |
             2. Never married  |   .5042493   .0756994     6.66   0.000     .3558811    .6526175
          3. Divorced/widowed  |   .6787202   .0546258    12.42   0.000     .5716556    .7857848
                               |
                   hhmemb_work |   3.672941   .0687164    53.45   0.000     3.538259    3.807623
                               |
                          wave |
             Wave 4 (2011/12)  |   .3118012   .0807195     3.86   0.000     .1535939    .4700084
                Wave 5 (2013)  |  -.5716207   .0793329    -7.21   0.000    -.7271103   -.4161311
                Wave 6 (2015)  |  -.7593481   .0775501    -9.79   0.000    -.9113435   -.6073526
             Wave 7 (2017/18)  |  -.7975258   .0764036   -10.44   0.000    -.9472741   -.6477775
             Wave 8 (2019/20)  |  -.6655215   .0810649    -8.21   0.000    -.8244058   -.5066372
                               |
                       country |
                      Germany  |  -1.168965     .10466   -11.17   0.000    -1.374095    -.963835
                       Sweden  |  -1.480859   .1034137   -14.32   0.000    -1.683546   -1.278172
                  Netherlands  |  -1.273757   .1367407    -9.32   0.000    -1.541764    -1.00575
                        Spain  |  -1.186293   .1140347   -10.40   0.000    -1.409797   -.9627893
                        Italy  |  -.9683722   .1125943    -8.60   0.000    -1.189053   -.7476915
                       France  |  -.4131417   .1014051    -4.07   0.000     -.611892   -.2143913
                      Denmark  |  -1.683413   .1049886   -16.03   0.000    -1.889186   -1.477639
                       Greece  |  -1.922236   .1445765   -13.30   0.000    -2.205601   -1.638871
                      Belgium  |  -.5099378   .0995423    -5.12   0.000    -.7050371   -.3148385
               Czech Republic  |   .0235277   .1025167     0.23   0.818    -.1774014    .2244568
                       Poland  |  -.4236044   .1582189    -2.68   0.007    -.7337077   -.1135011
                   Luxembourg  |   .8005673   .1579398     5.07   0.000     .4910109    1.110124
                      Hungary  |  -.2384578   .3374907    -0.71   0.480    -.8999274    .4230119
                     Portugal  |  -1.744507   .3401498    -5.13   0.000    -2.411188   -1.077825
                     Slovenia  |   .2154525   .1305904     1.65   0.099    -.0404999    .4714049
                      Estonia  |  -2.091223   .1080082   -19.36   0.000    -2.302915   -1.879531
                      Croatia  |  -.9198809   .2152789    -4.27   0.000     -1.34182   -.4979419
                    Lithuania  |  -1.531874   .3288001    -4.66   0.000     -2.17631   -.8874374
                     Bulgaria  |  -1.750336   .5283161    -3.31   0.001    -2.785816    -.714855
                       Cyprus  |     -1.822   .8435301    -2.16   0.031    -3.475289   -.1687116
                      Finland  |  -1.361717   .4022767    -3.39   0.001    -2.150165   -.5732691
                       Latvia  |  -2.491216   .6616125    -3.77   0.000    -3.787953    -1.19448
                        Malta  |          0  (empty)
                      Romania  |  -1.484375   .6202134    -2.39   0.017    -2.699971   -.2687794
                     Slovakia  |   -1.40925   .3980663    -3.54   0.000    -2.189446   -.6290545
                               |
                         _cons |  -2.556813   .2192327   -11.66   0.000    -2.986501   -2.127124
    ---------------------------+----------------------------------------------------------------
                      /lnsig2u |   -2.16503   .7041196                     -3.545079   -.7849811
    ---------------------------+----------------------------------------------------------------
                       sigma_u |   .3387425   .1192576                       .169901    .6753727
                           rho |   .0337032   .0229313                       .008698    .1217642
    --------------------------------------------------------------------------------------------
    LR test of rho=0: chibar2(01) = 2.27                   Prob >= chibar2 = 0.066
    Code:
    . hausman fe re //sigmamore option not allowed
    
                     ---- Coefficients ----
                 |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
                 |       fe           re         Difference       Std. err.
    -------------+----------------------------------------------------------------
    pov_risk_t_1 |   -.6016172    -.1795393       -.4220778        .2444998
         age_grp |
              2  |   -.7621384     1.532987       -2.295125        .5458784
              3  |    .7511475     3.644596       -2.893449        .7114418
              4  |    2.048137     5.536591       -3.488453         .850413
              5  |    .2238864     5.504902       -5.281015        .9802493
              6  |   -2.020909     5.611854       -7.632763        1.162086
    hhsize_eqh~r |   -1.527002    -.6933263       -.8336755        .7235039
      sphus_poor |   -.0086558     .2115868       -.2202427        .2288058
       work_type |
              2  |   -.7272602    -.0266944       -.7005657        .5069954
              3  |   -.1223119    -.4053891        .2830772        .6502483
    marital_st~s |
              4  |    .8187897     .5042493        .3145404        2.837579
              5  |    1.590961     .6787202        .9122412        .7105594
     hhmemb_work |    7.846142     3.672941        4.173201        .4753171
            wave |
              4  |    4.198946     .3118012        3.887145        .5569936
              5  |    7.219535    -.5716207        7.791155        .6539124
              6  |    9.880225    -.7593481        10.63957        .7250568
              7  |    12.43963    -.7975258        13.23716        .7884817
              8  |    15.73511    -.6655215        16.40063        .8880205
    ------------------------------------------------------------------------------
                            b = Consistent under H0 and Ha; obtained from xtlogit.
             B = Inconsistent under Ha, efficient under H0; obtained from xtlogit.
    
    Test of H0: Difference in coefficients not systematic
    
       chi2(18) = (b-B)'[(V_b-V_B)^(-1)](b-B)
                = 633.49
    Prob > chi2 = 0.0000
    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input float(trans pov_risk_t_1 educ) byte male float(age_grp hhsize_eqh_sr sphus_poor work_type) byte marital_status float hhmemb_work str12 mergeid
    . .  . 1 1 1.4142135 0 . 1 0 "AT-000327-01"
    1 0  . 1 1 1.4142135 1 2 1 1 "AT-000327-01"
    0 .  3 0 1 1.4142135 0 1 1 1 "AT-000327-02"
    . .  3 0 2         1 0 3 5 0 "AT-000674-01"
    1 1  3 0 3         1 0 3 5 0 "AT-000674-01"
    . 0  3 0 3         1 0 . 5 0 "AT-000674-01"
    . . 15 0 5         1 0 . 4 0 "AT-001215-01"
    . 0 15 0 5         1 1 . 4 0 "AT-001215-01"
    . 0 15 0 6         1 1 . 4 0 "AT-001215-01"
    . 0 15 0 6         1 1 . 4 0 "AT-001215-01"
    . 0 15 0 6         1 1 . 4 0 "AT-001215-01"
    . . 11 0 2 1.4142135 0 . 1 0 "AT-001492-01"
    . 0 11 0 3 1.4142135 0 . 1 0 "AT-001492-01"
    . 0 11 0 3 1.4142135 0 . 1 1 "AT-001492-01"
    . 0 11 0 4 1.4142135 0 . 1 0 "AT-001492-01"
    . 0 11 0 4 1.4142135 0 . 1 0 "AT-001492-01"
    . . 13 1 2 1.4142135 0 1 1 0 "AT-001492-02"
    0 0 13 1 3 1.4142135 0 1 1 0 "AT-001492-02"
    1 0 13 1 3 1.4142135 0 1 1 1 "AT-001492-02"
    . 0 13 1 4 1.4142135 0 . 1 0 "AT-001492-02"
    . 0 13 1 4 1.4142135 0 . 1 0 "AT-001492-02"
    . .  . 0 3 1.4142135 0 . 1 0 "AT-001816-01"
    . .  8 1 2 1.4142135 0 . 1 0 "AT-001816-02"
    0 0  8 1 2 1.7320508 0 1 1 0 "AT-001816-02"
    . .  . 0 6 1.4142135 0 1 1 0 "AT-001881-01"
    . 0  . 0 6 1.4142135 1 . 1 0 "AT-001881-01"
    . 0  . 0 6 1.4142135 1 . 5 0 "AT-001881-01"
    . 1  . 0 6 1.4142135 0 . 5 0 "AT-001881-01"
    . 0  . 0 6 1.4142135 1 . 5 0 "AT-001881-01"
    . .  . 1 6 1.4142135 1 . 1 0 "AT-001881-02"
    . 0  . 1 6 1.4142135 1 . 1 0 "AT-001881-02"
    . 0  . 1 6 1.7320508 1 . 1 0 "AT-001881-02"
    . 1  . 1 6 1.7320508 0 . 1 0 "AT-001881-02"
    . 0  . 1 6 1.7320508 0 . 1 0 "AT-001881-02"
    . . 10 0 5   2.44949 1 . 5 0 "AT-002132-01"
    . 1 10 0 5         1 1 . 5 0 "AT-002132-01"
    . . 20 1 2 1.7320508 1 . 1 0 "AT-002136-01"
    . 0 20 1 3 1.7320508 0 . 1 0 "AT-002136-01"
    . 0 20 1 3 1.7320508 1 . 1 0 "AT-002136-01"
    . 0 20 1 4 1.4142135 1 . 1 0 "AT-002136-01"
    . 0 20 1 4 1.4142135 1 . 1 0 "AT-002136-01"
    . . 14 0 2 1.7320508 0 . 1 0 "AT-002136-03"
    . 0 14 0 3 1.7320508 0 . 1 0 "AT-002136-03"
    . 0 14 0 3 1.7320508 0 . 1 0 "AT-002136-03"
    . 0 14 0 3 1.4142135 0 . 1 0 "AT-002136-03"
    . 0 14 0 4 1.4142135 0 . 1 0 "AT-002136-03"
    . .  . 1 6   2.44949 1 . 1 0 "AT-002180-02"
    . 1  . 1 6   2.44949 1 . 1 0 "AT-002180-02"
    . .  2 0 5   2.44949 1 . 1 0 "AT-002180-03"
    . 1  2 0 5   2.44949 1 . 1 0 "AT-002180-03"
    . 1  2 0 6  2.236068 1 . 5 0 "AT-002180-03"
    . .  . 1 5 1.4142135 1 . 1 0 "AT-002355-01"
    . .  . 0 5 1.4142135 1 . 1 0 "AT-002355-02"
    . .  . 0 4 1.4142135 1 . 1 0 "AT-002525-01"
    . 0  . 0 5 1.4142135 1 . 1 0 "AT-002525-01"
    . 0  . 0 5 1.4142135 1 . 1 0 "AT-002525-01"
    . 0  . 0 5 1.4142135 1 . 1 0 "AT-002525-01"
    . 0  . 0 6 1.4142135 1 . 1 0 "AT-002525-01"
    . .  . 1 4 1.4142135 1 . 1 0 "AT-002525-02"
    . 0  . 1 5 1.4142135 1 . 1 0 "AT-002525-02"
    . 0  . 1 5 1.4142135 1 . 1 0 "AT-002525-02"
    . 0  . 1 6 1.4142135 1 . 1 0 "AT-002525-02"
    . .  8 0 6 1.4142135 0 . 1 0 "AT-002573-01"
    . 0  8 0 6 1.4142135 0 . 1 0 "AT-002573-01"
    . .  8 1 4 1.4142135 0 . 1 0 "AT-002573-02"
    . 0  8 1 5 1.4142135 0 . 1 0 "AT-002573-02"
    . . 23 0 3         1 0 1 1 0 "AT-002800-01"
    1 0 23 0 3         1 0 1 1 0 "AT-002800-01"
    . 0 23 0 3         1 0 1 1 0 "AT-002800-01"
    . 0 23 0 4         1 1 . 1 0 "AT-002800-01"
    . .  8 0 6 1.4142135 0 . 5 0 "AT-002965-02"
    . 1  8 0 6 1.4142135 1 . 5 0 "AT-002965-02"
    . 1  8 0 6 1.4142135 1 . 5 0 "AT-002965-02"
    . 1  8 0 6 1.4142135 1 . 5 0 "AT-002965-02"
    . .  2 1 5 1.4142135 0 . 1 0 "AT-003194-01"
    . 0  2 1 6 1.4142135 0 . 1 0 "AT-003194-01"
    . 0  2 1 6 1.4142135 0 . 1 0 "AT-003194-01"
    . 0  2 1 6 1.4142135 0 . 1 0 "AT-003194-01"
    . 0  2 1 6 1.4142135 0 . 1 0 "AT-003194-01"
    . .  2 0 5 1.4142135 1 . 1 0 "AT-003194-02"
    . .  3 0 1 1.4142135 0 1 1 0 "AT-003683-01"
    . .  3 1 1 1.4142135 0 1 1 0 "AT-003683-02"
    . .  8 1 1 1.4142135 1 1 1 0 "AT-004234-01"
    . 0  8 1 2 1.4142135 1 . 1 0 "AT-004234-01"
    . 0  8 1 3 1.4142135 1 . 1 0 "AT-004234-01"
    . .  8 0 1 1.4142135 0 1 1 0 "AT-004234-02"
    0 0  8 0 2 1.4142135 1 1 1 0 "AT-004234-02"
    . .  8 0 4         1 0 1 4 0 "AT-004379-01"
    . 0  8 0 5         1 0 . 4 0 "AT-004379-01"
    . 1  8 0 6         1 1 . 4 0 "AT-004379-01"
    . .  8 1 6 1.4142135 1 . 1 0 "AT-004855-01"
    . 1  8 1 6 1.4142135 1 . 1 0 "AT-004855-01"
    . .  7 0 5 1.4142135 0 . 1 0 "AT-004855-02"
    . 1  7 0 5 1.4142135 1 . 1 0 "AT-004855-02"
    . 0  7 0 6 1.7320508 0 . 5 0 "AT-004855-02"
    . 1  7 0 6 1.7320508 1 . 5 0 "AT-004855-02"
    . 1  7 0 6 1.7320508 1 . 5 0 "AT-004855-02"
    . 1  7 0 6 1.7320508 1 . 5 0 "AT-004855-02"
    . 1  7 0 6 1.4142135 1 . 5 0 "AT-004855-02"
    . .  3 1 4         1 0 . 5 0 "AT-004974-01"
    end
    label values trans trans
    label def trans 0 "0. No transition", modify
    label def trans 1 "1. Retirement", modify
    label values pov_risk_t_1 pov_risk
    label def pov_risk 0 "not in risk of poverty", modify
    label def pov_risk 1 "in risk of poverty", modify
    label values educ eduyears_mod
    label values male gender
    label def gender 0 "Female", modify
    label def gender 1 "Male", modify
    label values age_grp age_grp
    label def age_grp 1 "50-54yo", modify
    label def age_grp 2 "55-59yo", modify
    label def age_grp 3 "60-64yo", modify
    label def age_grp 4 "65-69yo", modify
    label def age_grp 5 "70-74yo", modify
    label def age_grp 6 "75+yo", modify
    label values work_type work_type_val
    label def work_type_val 1 "1. Private sector employee", modify
    label def work_type_val 2 "2. Public sector employee", modify
    label def work_type_val 3 "3. Self-employed", modify
    label values marital_status marital_status
    label def marital_status 1 "1. Married/in partnership", modify
    label def marital_status 4 "2. Never married", modify
    label def marital_status 5 "3. Divorced/widowed", modify

  • #2
    1. Regarding the discrepancy between fixed effects and random effects models and the inability to use the Hausman test with clustered standard errors:

    You can estimate both models with clustered standard errors using the -vce(cluster mergeid)- option. After estimation, you can use the -estimates store- command to store the results, and then use -hausman- with the -alleqs- option to compare coefficients across the two models, even though it won't be a formal test:
    Code:
    xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, fe vce(cluster mergeid)
    estimates store fe_cluster
    
    xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, re vce(cluster mergeid)
    estimates store re_cluster
    
    hausman fe_cluster re_cluster, alleqs
    For the bootstrap Hausman test, you can use Stata's -bootstrap- command. Here's a sketch of the code:
    Code:
    bootstrap diff=(_b[fe:]-_b[re:]), reps(100) cluster(mergeid) : ///
        (xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, fe) ///
        (xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, re)
    This will give you the distribution of the differences in coefficients, which you can use to assess the significance of the differences.

    2. Regarding the omitted variables and reduced sample size in the fixed effects model:

    After running the fixed effects model, you can use -predict, residuals- to obtain the fixed effects. Then you can regress these on the time-invariant variables to see if there's a systematic relationship:
    Code:
    xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, fe
    predict fe, u
    reg fe educ male i.country
    To compare the random effects results on the fixed effects sample, you can use an -if- condition based on -e(sample)- from the fixed effects model:
    Code:
    xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, fe
    estimates store fe
    
    xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1 & e(sample), re
    estimates store re_fe_sample
    
    estimates table fe re_fe_sample, b se
    This will show you how much of the difference is due to the change in sample.

    Remember, Stata's -margins- command can be very useful for interpreting the coefficients in non-linear models like logit. After your -xtlogit- command, you can use something like:
    Code:
    margins, dydx(*)
    This will give you the average marginal effects, which are often more interpretable than the raw coefficients.

    Comment


    • #3
      Hello Mustafa,
      thanks for your kind reply, but there is a problem with the suggested approach for point 1:

      Originally posted by Mustafa Ugur Karakaplan View Post
      1. Regarding the discrepancy between fixed effects and random effects models and the inability to use the Hausman test with clustered standard errors:

      You can estimate both models with clustered standard errors using the -vce(cluster mergeid)- option.
      As a matter of fact, -xtlogit ..., fe- does not support -vce(cluster clusterid)- option like; it needs to be either -vce(bootstrap)- or -vce(jackknife)- (also discussed in this post). The same limitation does not apply to -xtlogit ..., re-, though. I also read the meaning of -hauman fe re, alleqs- option but I don't understand how it fits this context.

      On point 2, after running...
      Code:
      xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, fe
      predict fe, u
      reg fe educ male i.country
      ...I get:
      Code:
      . predict fe, u
      option u not allowed
      r(198);
      I examined -help xtreg postestimation- but I cannot seem to find the mistake. Help anyone?

      Another question on top of post #1:
      • How can I test the joint significance of i.country, and the joint significance of i.wave in a -xtlogit ..., fe- and -xtlogit ..., re-? Would -testparm i.wave- and -testparm i.country- be the correct approach?
      Thank you all!





      Comment


      • #4
        Anyone could help with the previous doubt, please? Thank you in advance

        Comment

        Working...
        X