Dear Statalist community,
I am using the mixed effects Weibull PH and AFT regression, and using the Kidney dataset as an example for my question.
use http://www.stata-press.com/data/r15/catheter
stset
mestreg age female || patient:, distribution(weibull)
failure _d: infect
analysis time _t: time
Fitting fixed-effects model:
Iteration 0: log likelihood = -1700989.9
Iteration 1: log likelihood = -440.1998
Iteration 2: log likelihood = -336.62162
Iteration 3: log likelihood = -334.64937
Iteration 4: log likelihood = -334.57959
Iteration 5: log likelihood = -334.57944
Iteration 6: log likelihood = -334.57944
Refining starting values:
Grid node 0: log likelihood = -336.03604
Fitting full model:
Iteration 0: log likelihood = -336.03604 (not concave)
Iteration 1: log likelihood = -333.14043
Iteration 2: log likelihood = -330.40952
Iteration 3: log likelihood = -329.89242
Iteration 4: log likelihood = -329.87847
Iteration 5: log likelihood = -329.87832
Iteration 6: log likelihood = -329.87832
Mixed-effects Weibull PH regression Number of obs = 76
Group variable: patient Number of groups = 38
Obs per group:
min = 2
avg = 2.0
max = 2
Integration method: mvaghermite Integration pts. = 7
Wald chi2(2) = 10.12
Log likelihood = -329.87832 Prob > chi2 = 0.0063
------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
age | 1.007348 .013788 0.53 0.593 .9806828 1.034737
female | .1904727 .099992 -3.16 0.002 .0680737 .5329493
_cons | .0072901 .0072274 -4.96 0.000 .0010444 .0508881
-------------+----------------------------------------------------------------
/ln_p | .2243233 .1402795 -.0506195 .4992661
-------------+----------------------------------------------------------------
patient |
var(_cons)| .8308495 .4978425 .256735 2.688808
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011
mestreg age female || patient:, distribution(weibull) time
failure _d: infect
analysis time _t: time
Fitting fixed-effects model:
Iteration 0: log likelihood = -346.46486
Iteration 1: log likelihood = -343.29515
Iteration 2: log likelihood = -335.0513
Iteration 3: log likelihood = -334.58308
Iteration 4: log likelihood = -334.57944
Iteration 5: log likelihood = -334.57944
Refining starting values:
Grid node 0: log likelihood = -335.10428
Fitting full model:
Iteration 0: log likelihood = -335.10428
Iteration 1: log likelihood = -332.13546
Iteration 2: log likelihood = -330.01623
Iteration 3: log likelihood = -329.88013
Iteration 4: log likelihood = -329.87832
Iteration 5: log likelihood = -329.87832
Mixed-effects Weibull AFT regression Number of obs = 76
Group variable: patient Number of groups = 38
Obs per group:
min = 2
avg = 2.0
max = 2
Integration method: mvaghermite Integration pts. = 7
Wald chi2(2) = 13.00
Log likelihood = -329.87832 Prob > chi2 = 0.0015
------------------------------------------------------------------------------
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
age | -.0058496 .010872 -0.54 0.591 -.0271585 .0154592
female | 1.325034 .3719102 3.56 0.000 .596103 2.053964
_cons | 3.932346 .5663757 6.94 0.000 2.82227 5.042422
-------------+----------------------------------------------------------------
/ln_p | .2243237 .1402794 -.0506189 .4992663
-------------+----------------------------------------------------------------
patient |
var(_cons)| .5304902 .2343675 .2231626 1.261053
------------------------------------------------------------------------------
LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011
Using the AFT model, the estimate for female in hazard ratio can be calculated as: exp(-exp(.2243237) * 1.325034) = 0.19
I am looking for advice on how to calculate the confidence interval in hazard ratio for female.
Many thanks.
I am using the mixed effects Weibull PH and AFT regression, and using the Kidney dataset as an example for my question.
use http://www.stata-press.com/data/r15/catheter
stset
mestreg age female || patient:, distribution(weibull)
failure _d: infect
analysis time _t: time
Fitting fixed-effects model:
Iteration 0: log likelihood = -1700989.9
Iteration 1: log likelihood = -440.1998
Iteration 2: log likelihood = -336.62162
Iteration 3: log likelihood = -334.64937
Iteration 4: log likelihood = -334.57959
Iteration 5: log likelihood = -334.57944
Iteration 6: log likelihood = -334.57944
Refining starting values:
Grid node 0: log likelihood = -336.03604
Fitting full model:
Iteration 0: log likelihood = -336.03604 (not concave)
Iteration 1: log likelihood = -333.14043
Iteration 2: log likelihood = -330.40952
Iteration 3: log likelihood = -329.89242
Iteration 4: log likelihood = -329.87847
Iteration 5: log likelihood = -329.87832
Iteration 6: log likelihood = -329.87832
Mixed-effects Weibull PH regression Number of obs = 76
Group variable: patient Number of groups = 38
Obs per group:
min = 2
avg = 2.0
max = 2
Integration method: mvaghermite Integration pts. = 7
Wald chi2(2) = 10.12
Log likelihood = -329.87832 Prob > chi2 = 0.0063
------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
age | 1.007348 .013788 0.53 0.593 .9806828 1.034737
female | .1904727 .099992 -3.16 0.002 .0680737 .5329493
_cons | .0072901 .0072274 -4.96 0.000 .0010444 .0508881
-------------+----------------------------------------------------------------
/ln_p | .2243233 .1402795 -.0506195 .4992661
-------------+----------------------------------------------------------------
patient |
var(_cons)| .8308495 .4978425 .256735 2.688808
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011
mestreg age female || patient:, distribution(weibull) time
failure _d: infect
analysis time _t: time
Fitting fixed-effects model:
Iteration 0: log likelihood = -346.46486
Iteration 1: log likelihood = -343.29515
Iteration 2: log likelihood = -335.0513
Iteration 3: log likelihood = -334.58308
Iteration 4: log likelihood = -334.57944
Iteration 5: log likelihood = -334.57944
Refining starting values:
Grid node 0: log likelihood = -335.10428
Fitting full model:
Iteration 0: log likelihood = -335.10428
Iteration 1: log likelihood = -332.13546
Iteration 2: log likelihood = -330.01623
Iteration 3: log likelihood = -329.88013
Iteration 4: log likelihood = -329.87832
Iteration 5: log likelihood = -329.87832
Mixed-effects Weibull AFT regression Number of obs = 76
Group variable: patient Number of groups = 38
Obs per group:
min = 2
avg = 2.0
max = 2
Integration method: mvaghermite Integration pts. = 7
Wald chi2(2) = 13.00
Log likelihood = -329.87832 Prob > chi2 = 0.0015
------------------------------------------------------------------------------
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
age | -.0058496 .010872 -0.54 0.591 -.0271585 .0154592
female | 1.325034 .3719102 3.56 0.000 .596103 2.053964
_cons | 3.932346 .5663757 6.94 0.000 2.82227 5.042422
-------------+----------------------------------------------------------------
/ln_p | .2243237 .1402794 -.0506189 .4992663
-------------+----------------------------------------------------------------
patient |
var(_cons)| .5304902 .2343675 .2231626 1.261053
------------------------------------------------------------------------------
LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011
Using the AFT model, the estimate for female in hazard ratio can be calculated as: exp(-exp(.2243237) * 1.325034) = 0.19
I am looking for advice on how to calculate the confidence interval in hazard ratio for female.
Many thanks.
Comment