Hi all,
I'm trying to conduct a principal component factor analysis on eight indices relating to mental and physical health (four each). This produces two factors (with eigenvalues greater than 1), where one factor loads heavily on psychological domains (mental health, vitality, role-emotional) and the other on physical domains (physical functioning, role-physical, bodily pain). I want to then use the first factor as a measure of mental health and perform further analysis on this (for example, look at average mental health scores in specific years).
I want to clarify whether it is correct to use the values predicted from the first factor (named 'sf1' in the code below) for further analysis of the mental health measure? The indices used to perform PCA are such that higher values indicate better health, so can I assume the same for the predicted scores from the PCA, where higher values would indicate better mental health?
Here is a subset of my data for the predicted scores:
I'm trying to conduct a principal component factor analysis on eight indices relating to mental and physical health (four each). This produces two factors (with eigenvalues greater than 1), where one factor loads heavily on psychological domains (mental health, vitality, role-emotional) and the other on physical domains (physical functioning, role-physical, bodily pain). I want to then use the first factor as a measure of mental health and perform further analysis on this (for example, look at average mental health scores in specific years).
I want to clarify whether it is correct to use the values predicted from the first factor (named 'sf1' in the code below) for further analysis of the mental health measure? The indices used to perform PCA are such that higher values indicate better health, so can I assume the same for the predicted scores from the PCA, where higher values would indicate better mental health?
Code:
pca vitality so_function em_role men_health ph_function ph_role pain gen_health, mineigen(1 > ) Principal components/correlation Number of obs = 110,393 Number of comp. = 2 Trace = 8 Rotation: (unrotated = principal) Rho = 0.6776 -------------------------------------------------------------------------- Component | Eigenvalue Difference Proportion Cumulative -------------+------------------------------------------------------------ Comp1 | 4.34624 3.27128 0.5433 0.5433 Comp2 | 1.07496 .366809 0.1344 0.6776 Comp3 | .708147 .1829 0.0885 0.7662 Comp4 | .525248 .108535 0.0657 0.8318 Comp5 | .416712 .0438174 0.0521 0.8839 Comp6 | .372895 .0554139 0.0466 0.9305 Comp7 | .317481 .0791587 0.0397 0.9702 Comp8 | .238322 . 0.0298 1.0000 -------------------------------------------------------------------------- Principal components (eigenvectors) ------------------------------------------------ Variable | Comp1 Comp2 | Unexplained -------------+--------------------+------------- vitality | 0.3799 -0.2486 | .3064 so_function | 0.4010 -0.1392 | .2802 em_role | 0.3235 -0.3743 | .3945 men_health | 0.3545 -0.4980 | .1871 ph_function | 0.3019 0.4935 | .342 ph_role | 0.3529 0.3306 | .3414 pain | 0.3452 0.4049 | .3059 gen_health | 0.3601 0.1180 | .4214 ------------------------------------------------ . rotate, varimax Principal components/correlation Number of obs = 110,393 Number of comp. = 2 Trace = 8 Rotation: orthogonal varimax (Kaiser off) Rho = 0.6776 -------------------------------------------------------------------------- Component | Variance Difference Proportion Cumulative -------------+------------------------------------------------------------ Comp1 | 2.81438 .207557 0.3518 0.3518 Comp2 | 2.60682 . 0.3259 0.6776 -------------------------------------------------------------------------- Rotated components ------------------------------------------------ Variable | Comp1 Comp2 | Unexplained -------------+--------------------+------------- vitality | 0.4471 0.0787 | .3064 so_function | 0.3877 0.1729 | .2802 em_role | 0.4921 -0.0516 | .3945 men_health | 0.5993 -0.1205 | .1871 ph_function | -0.1176 0.5665 | .342 ph_role | 0.0311 0.4825 | .3414 pain | -0.0254 0.5315 | .3059 gen_health | 0.1818 0.3325 | .4214 ------------------------------------------------ Component rotation matrix ---------------------------------- | Comp1 Comp2 -------------+-------------------- Comp1 | 0.7292 0.6843 Comp2 | -0.6843 0.7292 ---------------------------------- . predict sf1 sf2, score Scoring coefficients for orthogonal varimax rotation sum of squares(column-loading) = 1 ---------------------------------- Variable | Comp1 Comp2 -------------+-------------------- vitality | 0.4471 0.0787 so_function | 0.3877 0.1729 em_role | 0.4921 -0.0516 men_health | 0.5993 -0.1205 ph_function | -0.1176 0.5665 ph_role | 0.0311 0.4825 pain | -0.0254 0.5315 gen_health | 0.1818 0.3325 ----------------------------------
Here is a subset of my data for the predicted scores:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(sf1 sf2) 1.581653 1.0866716 1.1197572 .7934264 1.0202587 .8034239 .8457245 .806613 .8329989 1.344683 .4699488 .54378575 . . -.003876648 .682789 -.5739089 -2.499006 -1.4357677 -2.774586 -1.3355894 -3.725319 -3.05685 -4.913719 -2.529988 -3.770534 -1.3062733 -3.011108 -.57820594 -3.058407 . . -1.1788896 1.6541096 1.49292 .4379246 .56137186 .53877926 -.3444249 -.0369712 end
Comment