I run a multilevel logit model with the command 'meqrlogit' and want to calculate margins afterwards.
The model I run looks like this: My data has a no random effect at 2level(iid) , but I want try 3level variable.
Can i try to use 3level variable result, although var(_cons) estimate is near zero (and [95% conf. interval] is 0, .)?
Can someone advise me on what I need to do?
meqrlogit depvar indvar controlvars || country: || indiviual:
Many thanks in advance,
---result1( 2level variable included)----------------------------------------------------------------------------------------------------------------------------------------------
1level var: var1~unitprod
2lecel var: gender count countt1
3level var: rezscore
meqrlogit HL var1 var2 ........................zscore year unitprod gender count countt1 i.report || distric: ||iid:
Refining starting values:
Iteration 0: Log likelihood = -101127.52
Iteration 1: Log likelihood = -99249.164
Iteration 2: Log likelihood = -99159.736
Performing gradient-based optimization:
Iteration 0: Log likelihood = -99159.736
Iteration 1: Log likelihood = -98834.682
Iteration 2: Log likelihood = -98826.102
Iteration 3: Log likelihood = -98824.633
Iteration 4: Log likelihood = -98824.543
Iteration 5: Log likelihood = -98824.543
Mixed-effects logistic regression Number of obs = 566,266
----------------------------------------------------------------------------
| No. of Observations per group Integration
Group variable | groups Minimum Average Maximum points
----------------+-----------------------------------------------------------
distric | 14 2,315 40,447.6 98,092 7
iid | 487,645 1 1.2 4 7
----------------------------------------------------------------------------
Wald chi2(15) = 29183.93
Log likelihood = -98824.543 Prob > chi2 = 0.0000
--------------------------------------------------------------------------------
HL | Coefficient Std. err. z P>|z| [95% conf. interval]
---------------+----------------------------------------------------------------
var1 | -.500249 .0296816 -16.85 0.000 -.5584239 -.4420742
var2 | .5448803 .0381579 14.28 0.000 .4700921 .6196685
var3 | -.0109847 .0020302 -5.41 0.000 -.0149637 -.0070056
var4 | 7.524782 1.684792 4.47 0.000 4.222651 10.82691
zscore | -.0616966 .0063023 -9.79 0.000 -.0740489 -.0493442
year | .0008218 .0006155 1.34 0.182 -.0003846 .0020283
unitprod | .5638977 .0785972 7.17 0.000 .4098501 .7179454
gender | -.0372934 .0206259 -1.81 0.071 -.0777195 .0031327
count | -.5014045 .011078 -45.26 0.000 -.523117 -.4796921
countt1 | 3.770489 .0245449 153.62 0.000 3.722382 3.818596
|
report |
2 | .0101818 .0246468 0.41 0.680 -.0381251 .0584886
3 | -.1079834 .0245145 -4.40 0.000 -.1560309 -.0599359
|
_cons | -5.530518 .2398565 -23.06 0.000 -6.000629 -5.060408
--------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects parameters | Estimate Std. err. [95% conf. interval]
-----------------------------+------------------------------------------------
distric: Identity |
var(_cons) | .5107357 .1943563 .2422582 1.076748
-----------------------------+------------------------------------------------
iid: Identity |
var(_cons) | 1.68e-14 6.32e-09 0 .
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 3982.06 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
estat icc
Residual intraclass correlation
------------------------------------------------------------------------------
Level | ICC Std. err. [95% conf. interval]
-----------------------------+------------------------------------------------
distric | .1343828 .0442662 .0685871 .2465864
iid|distric | .1343828 .0442662 .0685871 .2465864
------------------------------------------------------------------------------
---result2( 3level variable included)----------------------------------------------------------------------------------------------------------------------------------------------
meqrlogit HL var1 var2 var3..... zscore year unitprod gender count countt1 i.report rezscore || distric: ||iid:
Refining starting values:
Iteration 0: Log likelihood = -101133.73
Iteration 1: Log likelihood = -99255.01
Iteration 2: Log likelihood = -99138.046
Performing gradient-based optimization:
Iteration 0: Log likelihood = -99138.046
Iteration 1: Log likelihood = -99118.546
Iteration 2: Log likelihood = -98858.221
Iteration 3: Log likelihood = -98818.615
Iteration 4: Log likelihood = -98818.095
Iteration 5: Log likelihood = -98818.087
Iteration 6: Log likelihood = -98818.087
Mixed-effects logistic regression Number of obs = 566,266
----------------------------------------------------------------------------
| No. of Observations per group Integration
Group variable | groups Minimum Average Maximum points
----------------+-----------------------------------------------------------
distric | 14 2,315 40,447.6 98,092 7
iid | 487,645 1 1.2 4 7
----------------------------------------------------------------------------
Wald chi2(16) = 29185.02
Log likelihood = -98818.087 Prob > chi2 = 0.0000
--------------------------------------------------------------------------------
HL | Coefficient Std. err. z P>|z| [95% conf. interval]
---------------+----------------------------------------------------------------
var1 | -.4979377 .0296799 -16.78 0.000 -.5561093 -.4397662
var2 | .5439284 .0381508 14.26 0.000 .4691542 .6187026
var3 | -.0114268 .0020332 -5.62 0.000 -.0154117 -.0074418
var4 | 7.213518 1.687064 4.28 0.000 3.906935 10.5201
zscore | -.066191 .0064236 -10.30 0.000 -.078781 -.053601
year| .0008425 .0006156 1.37 0.171 -.0003641 .002049
unitprod | .5702453 .0786189 7.25 0.000 .4161551 .7243355
gender | -.0374704 .0206265 -1.82 0.069 -.0778976 .002956
count | -.5025206 .0110858 -45.33 0.000 -.5242484 -.4807929
countt1 | 3.769611 .0245471 153.57 0.000 3.7215 3.817722
|
report |
2 | .0292483 .025277 1.16 0.247 -.0202937 .0787902
3 | -.0869191 .0252618 -3.44 0.001 -.1364314 -.0374069
|
rezscore | .0339146 .0094317 3.60 0.000 .0154289 .0524004
_cons | -5.535763 .2414672 -22.93 0.000 -6.00903 -5.062496
--------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects parameters | Estimate Std. err. [95% conf. interval]
-----------------------------+------------------------------------------------
distric: Identity |
var(_cons) | .5216787 .1985247 .2474449 1.099835
-----------------------------+------------------------------------------------
iid: Identity |
var(_cons) | 1.58e-20 6.13e-12 0 .
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 3984.54 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. estat icc
Residual intraclass correlation
------------------------------------------------------------------------------
Level | ICC Std. err. [95% conf. interval]
-----------------------------+------------------------------------------------
distric | .136868 .0449563 .0699528 .2505489
iid|distric | .136868 .0449563 .0699528 .2505489
------------------------------------------------------------------------------
The model I run looks like this: My data has a no random effect at 2level(iid) , but I want try 3level variable.
Can i try to use 3level variable result, although var(_cons) estimate is near zero (and [95% conf. interval] is 0, .)?
Can someone advise me on what I need to do?
meqrlogit depvar indvar controlvars || country: || indiviual:
Many thanks in advance,
---result1( 2level variable included)----------------------------------------------------------------------------------------------------------------------------------------------
1level var: var1~unitprod
2lecel var: gender count countt1
3level var: rezscore
meqrlogit HL var1 var2 ........................zscore year unitprod gender count countt1 i.report || distric: ||iid:
Refining starting values:
Iteration 0: Log likelihood = -101127.52
Iteration 1: Log likelihood = -99249.164
Iteration 2: Log likelihood = -99159.736
Performing gradient-based optimization:
Iteration 0: Log likelihood = -99159.736
Iteration 1: Log likelihood = -98834.682
Iteration 2: Log likelihood = -98826.102
Iteration 3: Log likelihood = -98824.633
Iteration 4: Log likelihood = -98824.543
Iteration 5: Log likelihood = -98824.543
Mixed-effects logistic regression Number of obs = 566,266
----------------------------------------------------------------------------
| No. of Observations per group Integration
Group variable | groups Minimum Average Maximum points
----------------+-----------------------------------------------------------
distric | 14 2,315 40,447.6 98,092 7
iid | 487,645 1 1.2 4 7
----------------------------------------------------------------------------
Wald chi2(15) = 29183.93
Log likelihood = -98824.543 Prob > chi2 = 0.0000
--------------------------------------------------------------------------------
HL | Coefficient Std. err. z P>|z| [95% conf. interval]
---------------+----------------------------------------------------------------
var1 | -.500249 .0296816 -16.85 0.000 -.5584239 -.4420742
var2 | .5448803 .0381579 14.28 0.000 .4700921 .6196685
var3 | -.0109847 .0020302 -5.41 0.000 -.0149637 -.0070056
var4 | 7.524782 1.684792 4.47 0.000 4.222651 10.82691
zscore | -.0616966 .0063023 -9.79 0.000 -.0740489 -.0493442
year | .0008218 .0006155 1.34 0.182 -.0003846 .0020283
unitprod | .5638977 .0785972 7.17 0.000 .4098501 .7179454
gender | -.0372934 .0206259 -1.81 0.071 -.0777195 .0031327
count | -.5014045 .011078 -45.26 0.000 -.523117 -.4796921
countt1 | 3.770489 .0245449 153.62 0.000 3.722382 3.818596
|
report |
2 | .0101818 .0246468 0.41 0.680 -.0381251 .0584886
3 | -.1079834 .0245145 -4.40 0.000 -.1560309 -.0599359
|
_cons | -5.530518 .2398565 -23.06 0.000 -6.000629 -5.060408
--------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects parameters | Estimate Std. err. [95% conf. interval]
-----------------------------+------------------------------------------------
distric: Identity |
var(_cons) | .5107357 .1943563 .2422582 1.076748
-----------------------------+------------------------------------------------
iid: Identity |
var(_cons) | 1.68e-14 6.32e-09 0 .
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 3982.06 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
estat icc
Residual intraclass correlation
------------------------------------------------------------------------------
Level | ICC Std. err. [95% conf. interval]
-----------------------------+------------------------------------------------
distric | .1343828 .0442662 .0685871 .2465864
iid|distric | .1343828 .0442662 .0685871 .2465864
------------------------------------------------------------------------------
---result2( 3level variable included)----------------------------------------------------------------------------------------------------------------------------------------------
meqrlogit HL var1 var2 var3..... zscore year unitprod gender count countt1 i.report rezscore || distric: ||iid:
Refining starting values:
Iteration 0: Log likelihood = -101133.73
Iteration 1: Log likelihood = -99255.01
Iteration 2: Log likelihood = -99138.046
Performing gradient-based optimization:
Iteration 0: Log likelihood = -99138.046
Iteration 1: Log likelihood = -99118.546
Iteration 2: Log likelihood = -98858.221
Iteration 3: Log likelihood = -98818.615
Iteration 4: Log likelihood = -98818.095
Iteration 5: Log likelihood = -98818.087
Iteration 6: Log likelihood = -98818.087
Mixed-effects logistic regression Number of obs = 566,266
----------------------------------------------------------------------------
| No. of Observations per group Integration
Group variable | groups Minimum Average Maximum points
----------------+-----------------------------------------------------------
distric | 14 2,315 40,447.6 98,092 7
iid | 487,645 1 1.2 4 7
----------------------------------------------------------------------------
Wald chi2(16) = 29185.02
Log likelihood = -98818.087 Prob > chi2 = 0.0000
--------------------------------------------------------------------------------
HL | Coefficient Std. err. z P>|z| [95% conf. interval]
---------------+----------------------------------------------------------------
var1 | -.4979377 .0296799 -16.78 0.000 -.5561093 -.4397662
var2 | .5439284 .0381508 14.26 0.000 .4691542 .6187026
var3 | -.0114268 .0020332 -5.62 0.000 -.0154117 -.0074418
var4 | 7.213518 1.687064 4.28 0.000 3.906935 10.5201
zscore | -.066191 .0064236 -10.30 0.000 -.078781 -.053601
year| .0008425 .0006156 1.37 0.171 -.0003641 .002049
unitprod | .5702453 .0786189 7.25 0.000 .4161551 .7243355
gender | -.0374704 .0206265 -1.82 0.069 -.0778976 .002956
count | -.5025206 .0110858 -45.33 0.000 -.5242484 -.4807929
countt1 | 3.769611 .0245471 153.57 0.000 3.7215 3.817722
|
report |
2 | .0292483 .025277 1.16 0.247 -.0202937 .0787902
3 | -.0869191 .0252618 -3.44 0.001 -.1364314 -.0374069
|
rezscore | .0339146 .0094317 3.60 0.000 .0154289 .0524004
_cons | -5.535763 .2414672 -22.93 0.000 -6.00903 -5.062496
--------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects parameters | Estimate Std. err. [95% conf. interval]
-----------------------------+------------------------------------------------
distric: Identity |
var(_cons) | .5216787 .1985247 .2474449 1.099835
-----------------------------+------------------------------------------------
iid: Identity |
var(_cons) | 1.58e-20 6.13e-12 0 .
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 3984.54 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. estat icc
Residual intraclass correlation
------------------------------------------------------------------------------
Level | ICC Std. err. [95% conf. interval]
-----------------------------+------------------------------------------------
distric | .136868 .0449563 .0699528 .2505489
iid|distric | .136868 .0449563 .0699528 .2505489
------------------------------------------------------------------------------
Comment