Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Different outcomes in joint and separate model

    Dear all, I am running a fixed effects model with the the following outcome:

    Code:
     xtreg EMTOTAL NOMCOMM NOMCOMM_IND COMPCOMM COMPCOMM_IND AUDCOMM AUDCOMM_IND ATT SUSCOMM BSIZE BGD INC INDEP DUAL ROA LEV FSIZE MULT SKILLS i.YEAR, fe vce(cluster ID) // NOMCOMM_IND*; COMPCOMM_IND**; AUDCOMM_IND**; FSIZE***; MULT**
    
    Fixed-effects (within) regression               Number of obs     =      2,197
    Group variable: ID                              Number of groups  =        374
    
    R-squared:                                      Obs per group:
         Within  = 0.2327                                         min =          1
         Between = 0.3455                                         avg =        5.9
         Overall = 0.3084                                         max =         12
    
                                                    F(28, 373)        =          .
    corr(u_i, Xb) = 0.3376                          Prob > F          =          .
    
                                       (Std. err. adjusted for 374 clusters in ID)
    ------------------------------------------------------------------------------
                 |               Robust
         EMTOTAL | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
         NOMCOMM |   .2009752   .1856693     1.08   0.280    -.1641146     .566065
     NOMCOMM_IND |  -.0047824   .0028462    -1.68   0.094     -.010379    .0008141
        COMPCOMM |   .1019664   .1088173     0.94   0.349    -.1120058    .3159386
    COMPCOMM_IND |   .0129957   .0054742     2.37   0.018     .0022316    .0237599
         AUDCOMM |   .2679236   .3238402     0.83   0.409    -.3688578     .904705
     AUDCOMM_IND |  -.0148516   .0058586    -2.54   0.012    -.0263715   -.0033316
             ATT |   .0000887    .001503     0.06   0.953    -.0028667    .0030441
         SUSCOMM |   .0202437    .046531     0.44   0.664    -.0712522    .1117396
           BSIZE |  -.1299499   .1058398    -1.23   0.220    -.3380674    .0781677
             BGD |   .0000569   .0023852     0.02   0.981    -.0046332     .004747
             INC |   .0149433    .026777     0.56   0.577    -.0377096    .0675962
           INDEP |   -.003699   .0035347    -1.05   0.296    -.0106493    .0032514
            DUAL |  -.0500078   .0593761    -0.84   0.400    -.1667617    .0667461
             ROA |  -.0103688   .0201865    -0.51   0.608    -.0500624    .0293249
             LEV |  -.3416139    .214623    -1.59   0.112    -.7636366    .0804088
           FSIZE |   .4993285   .0971064     5.14   0.000     .3083838    .6902731
            MULT |   .2298811    .091051     2.52   0.012     .0508436    .4089186
          SKILLS |   .0003486    .001168     0.30   0.765     -.001948    .0026453
                 |
            YEAR |
           2012  |   -.138169   .0659451    -2.10   0.037    -.2678397   -.0084983
           2013  |  -.2258837   .0604424    -3.74   0.000    -.3447343   -.1070331
           2014  |   -.266024    .059275    -4.49   0.000    -.3825791   -.1494689
           2015  |  -.2482914    .057194    -4.34   0.000    -.3607545   -.1358284
           2016  |  -.2634871   .0606245    -4.35   0.000    -.3826957   -.1442784
           2017  |  -.3663103   .0613012    -5.98   0.000    -.4868496    -.245771
           2018  |  -.3977307   .0642845    -6.19   0.000    -.5241363   -.2713251
           2019  |  -.4206851   .0652578    -6.45   0.000    -.5490044   -.2923657
           2020  |  -.4750202   .0725768    -6.55   0.000    -.6177312   -.3323092
           2021  |  -.5931662     .07366    -8.05   0.000     -.738007   -.4483253
           2022  |  -.6212537   .0779522    -7.97   0.000    -.7745346   -.4679729
           2023  |  -.6250788   .0816359    -7.66   0.000    -.7856032   -.4645545
                 |
           _cons |   2.565551   2.273944     1.13   0.260    -1.905806    7.036907
    -------------+----------------------------------------------------------------
         sigma_u |  2.0473429
         sigma_e |  .31648166
             rho |  .97666218   (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    The variables NOMCOMM until ATT are independent variables, the rest are controls . I also run separate models for each "set" of independent variables (e.g., one model only with NOMCOMM and NOMCOMM_IND as indep. var. and so on). Now the significances of the different variables are usually the same between the "joint" model and the separate model. However, AUDCOMM is insignificant in the joint model (as shown above) but significant at the 5% level in the model where only AUDCOMM and AUDCOMM_IND are included as independent variables next to the controls. Now my question is:

    What is the most likely reason for this? Is it just that AUDCOMM might be impacted by some of the other independent variables that are included in the joint model? Or is there something else that could be the reason? I have found out through a VIF and correlation matrix analysis that multicollinearity is not a problem in the dataset (VIF < 2 for all variables in the joint model).


    Thanks a lot in advance!
Working...
X