Hi,
Could someone please explain to me why the output of the first three regression commands below differs from the output of the last command? Based on the information provided in `help fvvarlist', I would expect all outputs to be the same as the one given by the last command.
Thank you,
Gabor
Output of the first three commands:
Output of the last command:
Could someone please explain to me why the output of the first three regression commands below differs from the output of the last command? Based on the information provided in `help fvvarlist', I would expect all outputs to be the same as the one given by the last command.
Thank you,
Gabor
Code:
clear all set obs 1000000 set seed 134 gen cat=mod(_n, 3)+1 gen y=rnormal(0,.1) replace y=y+1 if cat==2 replace y=y+2 if cat==3 * first set of regressions reg y 2.cat 3.cat reg y i(2 3).cat reg y i2.cat i3.cat * last regression reg y 2bn.cat 3bn.cat
Code:
Source | SS df MS Number of obs = 1,000,000 -------------+---------------------------------- F(1, 999998) > 99999.00 Model | 500055.387 1 500055.387 Prob > F = 0.0000 Residual | 176737.175 999,998 .176737529 R-squared = 0.7389 -------------+---------------------------------- Adj R-squared = 0.7389 Total | 676792.563 999,999 .676793239 Root MSE = .4204 ------------------------------------------------------------------------------ y | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- 3.cat | 1.500083 .0008918 1682.07 0.000 1.498336 1.501831 _cons | .499973 .0005149 971.04 0.000 .4989639 .5009822 ------------------------------------------------------------------------------
Code:
. reg y 2bn.cat 3bn.cat Source | SS df MS Number of obs = 1,000,000 -------------+---------------------------------- F(2, 999997) > 99999.00 Model | 666799.899 2 333399.949 Prob > F = 0.0000 Residual | 9992.66366 999,997 .009992694 R-squared = 0.9852 -------------+---------------------------------- Adj R-squared = 0.9852 Total | 676792.563 999,999 .676793239 Root MSE = .09996 ------------------------------------------------------------------------------ y | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- cat | 2 | 1.000233 .0002449 4084.93 0.000 .9997533 1.000713 3 | 2.000201 .0002449 8168.77 0.000 1.999721 2.000681 | _cons | -.0001443 .0001731 -0.83 0.404 -.0004837 .000195 ------------------------------------------------------------------------------
Comment