Hello.
I'm a master student studying sociology.
Using the growth curve model, I examine the relationship between age discrimination and depressive symptoms in older adults and the moderating effect of social participation in the relationship.
X: age discrimination(earlyret)
Y: depressive symptoms(cesd)
Moderators: social participation(fm_v4)
My question is...
1) In my model, the slope of direct effect( social participation) was not significant ( please see the red line, fm_v4#c.c_age).
2) Also, interaction effect (social participation*age discrimination) was not significant (please see the red line, earlyret#fm_v4#c.c_age)
3) Therefore, the intercept are only significant in my model.
So I expected margins plot that there are no slope differences.
However, in my figure, there are a slope difference.
How can I explain these situation?

Thank you for reading my post!
Best,
Gayoung
I'm a master student studying sociology.
Using the growth curve model, I examine the relationship between age discrimination and depressive symptoms in older adults and the moderating effect of social participation in the relationship.
X: age discrimination(earlyret)
Y: depressive symptoms(cesd)
Moderators: social participation(fm_v4)
My question is...
1) In my model, the slope of direct effect( social participation) was not significant ( please see the red line, fm_v4#c.c_age).
2) Also, interaction effect (social participation*age discrimination) was not significant (please see the red line, earlyret#fm_v4#c.c_age)
3) Therefore, the intercept are only significant in my model.
Code:
. mixed cesd ($indi $health i.infm_v2 i.earlyret##i.fm_v4)##c.c_age || pid: c_age, cov(un) Performing EM optimization ... Performing gradient-based optimization: Iteration 0: Log likelihood = -17364.477 Iteration 1: Log likelihood = -17359.326 Iteration 2: Log likelihood = -17359.321 Iteration 3: Log likelihood = -17359.321 Computing standard errors ... Mixed-effects ML regression Number of obs = 6,335 Group variable: pid Number of groups = 1,763 Obs per group: min = 1 avg = 3.6 max = 8 Wald chi2(28) = 351.62 Log likelihood = -17359.321 Prob > chi2 = 0.0000 ---------------------------------------------------------------------------------------- cesd | Coefficient Std. err. z P>|z| [95% conf. interval] -----------------------+---------------------------------------------------------------- c_age | -.0103718 .1001608 -0.10 0.918 -.2066833 .1859397 1.female | -.0074826 .272614 -0.03 0.978 -.5417963 .5268311 | edu | 2 | -.5330101 .2889121 -1.84 0.065 -1.099267 .0332472 3 | .080262 .3877078 0.21 0.836 -.6796313 .8401552 | lg_hinc | -.2996866 .1384337 -2.16 0.030 -.5710118 -.0283615 1.maritalb | -1.54429 .3369001 -4.58 0.000 -2.204602 -.883978 0.urban | .4072159 .3235032 1.26 0.208 -.2268386 1.04127 1.baby | -1.323011 .3347397 -3.95 0.000 -1.979089 -.6669336 1.firselfhealth | .590916 .1739587 3.40 0.001 .2499632 .9318688 chronic | .1370472 .1383622 0.99 0.322 -.1341378 .4082322 1.infm_v2 | -.9681479 .166661 -5.81 0.000 -1.294798 -.6414983 1.earlyret | 1.726809 .4565981 3.78 0.000 .8318932 2.621725 1.fm_v4 | -.5888003 .2376224 -2.48 0.013 -1.054532 -.1230689 | earlyret#fm_v4 | 1 1 | -1.076948 .5064372 -2.13 0.033 -2.069546 -.0843493 | c.c_age#c.c_age | -.0061064 .0019121 -3.19 0.001 -.0098541 -.0023588 | female#c.c_age | 1 | -.0322041 .0233002 -1.38 0.167 -.0778716 .0134633 | edu#c.c_age | 2 | -.0242902 .0256213 -0.95 0.343 -.0745071 .0259267 3 | .0378368 .0332827 1.14 0.256 -.027396 .1030697 | c.lg_hinc#c.c_age | .0001526 .0114428 0.01 0.989 -.0222749 .02258 | maritalb#c.c_age | 1 | .0060822 .0337838 0.18 0.857 -.0601327 .0722972 | urban#c.c_age | 0 | .0272908 .0292365 0.93 0.351 -.0300117 .0845932 | baby#c.c_age | 1 | -.1048218 .0343953 -3.05 0.002 -.1722354 -.0374082 | firselfhealth#c.c_age | 1 | -.0247417 .0186391 -1.33 0.184 -.0612736 .0117902 | c.chronic#c.c_age | -.005467 .0151906 -0.36 0.719 -.03524 .024306 | infm_v2#c.c_age | 1 | -.0331699 .0167057 -1.99 0.047 -.0659125 -.0004273 | earlyret#c.c_age | 1 | .0359466 .0492728 0.73 0.466 -.0606262 .1325195 | fm_v4#c.c_age | 1 | -.0388203 .0235069 -1.65 0.099 -.0848929 .0072524 | earlyret#fm_v4#c.c_age | 1 1 | -.0780107 .0540975 -1.44 0.149 -.1840398 .0280185 | _cons | 9.588647 1.134577 8.45 0.000 7.364916 11.81238 ---------------------------------------------------------------------------------------- ------------------------------------------------------------------------------ Random-effects parameters | Estimate Std. err. [95% conf. interval] -----------------------------+------------------------------------------------ pid: Unstructured | var(c_age) | .040588 .0061177 .0302064 .0545378 var(_cons) | 12.76785 .9137959 11.09679 14.69056 cov(c_age,_cons) | .58007 .0673852 .4479975 .7121425 -----------------------------+------------------------------------------------ var(Residual) | 9.741261 .2304172 9.29996 10.2035 ------------------------------------------------------------------------------ LR test vs. linear model: chi2(3) = 1032.02 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference. .
However, in my figure, there are a slope difference.
How can I explain these situation?
Thank you for reading my post!
Best,
Gayoung
Comment