Hi everyone
I am trying to run logistic regression but I have some problems.
here is the :
and the result
In this model, the variable” going concern” has been omitted but I need this variable, So how can I fix this?
For information,” going concern” is a dummy variable.
Thank you in advance!
I am trying to run logistic regression but I have some problems.
here is the :
Code:
xtlogit kams2 goingconcern auditortype win_ocf win_roe win_boardindepenence win_auditcost win_fsize win_leverage boardsize i.indcode i.year , re vce(cluster firmcode) nolog
Code:
note: goingconcern != 0 predicts success perfectly; goingconcern omitted and 4 obs not used. note: 10.indcode != 0 predicts success perfectly; 10.indcode omitted and 6 obs not used. note: 28.indcode != 0 predicts failure perfectly; 28.indcode omitted and 6 obs not used. note: boardsize omitted because of collinearity. note: 54.indcode omitted because of collinearity. Calculating robust standard errors ... Random-effects logistic regression Number of obs = 728 Group variable: firmcode Number of groups = 122 Random effects u_i ~ Gaussian Obs per group: min = 4 avg = 6.0 max = 6 Integration method: mvaghermite Integration pts. = 12 Wald chi2(26) = . Log pseudolikelihood = -358.89337 Prob > chi2 = . (Std. err. adjusted for 122 clusters in firmcode) -------------------------------------------------------------------------------------- | Robust kams2 | Coefficient std. err. z P>|z| [95% conf. interval] ---------------------+---------------------------------------------------------------- goingconcern | 0 (omitted) auditortype | .8239995 .4402713 1.87 0.061 -.0389165 1.686915 win_ocf | -1.848223 .9876459 -1.87 0.061 -3.783974 .087527 win_roe | -1.704159 .5625449 -3.03 0.002 -2.806726 -.601591 win_boardindepenence | -1.528077 .9346605 -1.63 0.102 -3.359978 .3038236 win_auditcost | -.0539769 .2998422 -0.18 0.857 -.6416569 .5337031 win_fsize | .1582842 .2109013 0.75 0.453 -.2550747 .5716431 win_leverage | -1.426802 .9602935 -1.49 0.137 -3.308943 .4553386 boardsize | 0 (omitted) | indcode | 10 | 0 (empty) 11 | 1.611654 1.161584 1.39 0.165 -.6650091 3.888317 13 | .3956403 1.605448 0.25 0.805 -2.75098 3.54226 14 | 2.886265 1.059655 2.72 0.006 .8093791 4.963152 23 | -.2562683 1.803915 -0.14 0.887 -3.791876 3.279339 25 | -.781918 1.912321 -0.41 0.683 -4.529999 2.966163 27 | 1.274422 1.132625 1.13 0.261 -.9454823 3.494326 28 | 0 (empty) 29 | 2.377334 1.440187 1.65 0.099 -.4453807 5.200049 31 | 4.52582 1.551252 2.92 0.004 1.485421 7.566218 34 | .8938229 1.132032 0.79 0.430 -1.32492 3.112566 38 | .5772835 1.030465 0.56 0.575 -1.442391 2.596958 42 | -.8353585 1.301148 -0.64 0.521 -3.385561 1.714844 43 | .5225873 1.182988 0.44 0.659 -1.796026 2.841201 44 | 1.11104 1.209117 0.92 0.358 -1.258786 3.480866 49 | -.8858398 1.943006 -0.46 0.648 -4.694061 2.922382 53 | -1.164449 1.276902 -0.91 0.362 -3.667131 1.338232 54 | 0 (omitted) | year | 1397 | -.1929489 .2243773 -0.86 0.390 -.6327204 .2468225 1398 | -1.00974 .3571861 -2.83 0.005 -1.709812 -.3096684 1399 | -1.682763 .4669916 -3.60 0.000 -2.59805 -.7674763 1400 | -1.519616 .456696 -3.33 0.001 -2.414724 -.6245087 1401 | .6046043 .6346018 0.95 0.341 -.6391924 1.848401 | _cons | -.6281887 2.727991 -0.23 0.818 -5.974952 4.718575 ---------------------+---------------------------------------------------------------- /lnsig2u | 1.388739 .253732 .8914329 1.886044 ---------------------+---------------------------------------------------------------- sigma_u | 2.002446 .2540423 1.561609 2.56773 rho | .5493119 .062816 .4257006 .667122 --------------------------------------------------------------------------------------
For information,” going concern” is a dummy variable.
Thank you in advance!
Comment