Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Extremely large coefficient

    Hi,
    I am in the process of investigating (for a thesis) on how average income can be / is impacted by the constant inflow of immigrants into a country. I have average income data on all provinces as well as shift-share of immigrants (for both sex) across 2013-2022. While the average income is in hundreds of thousands, my shift-share is in decimal points. I performed panel data regression on average income including other independent variables beside shift-share, but the coefficient of the shift-share I have gotten is astronomically large which I cannot make sense of it. I am looking for guidance on how I can approach this issue, and any tips would be handy, thanks!

  • #2
    Standard practice is to use ln(average income) as the dependent variable. That will fix your problem and make the coefficient have a sensible interpretation. (%change in income given a percentage point change in share. You can use margins to get elasticity).

    The problem with using levels is that you get a "mean" effect on the coefficient, at the mean may be larger than average income for some members of the sample.

    Comment


    • #3
      Thank you for the response, George. The problem is that I am facing the same issue even when I transform my variable average income into logarithm form. Tried a couple of things to see if i have misspecification issue but so far no luck.

      Comment


      • #4
        You have fixed effects for country?

        Comment


        • #5
          The data I have is for Denmark.

          Comment


          • #6
            Here is a glimpse of the data I have with regards to average income and shift-share for male
            Province Year Average income SS_M
            "PCC" 2013 337639 .00076
            "PCC" 2014 344384 .0011
            "PCC" 2015 353485 .00162
            "PCC" 2016 362413 -.00104
            "PCC" 2017 372443 -.001
            "PCC" 2018 385552 -.00036
            "PCC" 2019 392441 .00006
            "PCC" 2020 415306 -.00098
            "PCC" 2021 423726 .00012
            "PCC" 2022 438224 .00356
            "PCA" 2013 391499 .000686230552207768
            "PCA" 2014 397910 .001013596704871724
            "PCA" 2015 408161 .0015457631147393956
            "PCA" 2016 413425 -.0010331644745475625
            "PCA" 2017 419996 -.0010390775996814703
            "PCA" 2018 429152 -.0003867465675674716
            "PCA" 2019 433814 .00006390682285565869
            "PCA" 2020 455120 -.0010798979620496095
            "PCA" 2021 463258 .00013768990664465847
            "PCA" 2022 473808 .004128844331519971
            "PNZ" 2013 429648 .0003094505530339657
            "PNZ" 2014 435857 .000466584729375131
            "PNZ" 2015 445827 .0007599083968506439
            "PNZ" 2016 448280 -.0005238051296756172
            "PNZ" 2017 451584 -.000519118799545795
            "PNZ" 2018 462121 -.00019165480601086228
            "PNZ" 2019 463925 .000031089450912855137
            "PNZ" 2020 487227 -.0005175072259926876
            "PNZ" 2021 494522 .00006335767622219998
            "PNZ" 2022 502521 .0018757523505842607
            "PB" 2013 260309 .00012358869722133508
            "PB" 2014 265995 .00020264423475218433
            "PB" 2015 276367 .0003961055478484748
            "PB" 2016 276603 -.00028886598610145014
            "PB" 2017 282598 -.00029618322769119293
            "PB" 2018 293672 -.00011067409332641549
            "PB" 2019 286506 .000018052423367683287
            "PB" 2020 297557 -.000292737531698579
            "PB" 2021 298592 .000036401804651967235
            "PB" 2022 309923 .001089058614636829
            "PEZ" 2013 380571 .0003232229693875865
            "PEZ" 2014 385215 .0004906784158649971
            "PEZ" 2015 394276 .0007917585145957408
            "PEZ" 2016 400507 -.0005360043342380299
            "PEZ" 2017 407111 -.0005236054293812254
            "PEZ" 2018 418391 -.0001922016592759227
            "PEZ" 2019 420406 .00003154600650332961
            "PEZ" 2020 446642 -.0005307084784381331
            "PEZ" 2021 447593 .00006566477516925226
            "PEZ" 2022 456970 .001993057346005828
            "PWSZ" 2013 308935 .00025
            "PWSZ" 2014 315513 .00038
            "PWSZ" 2015 323197 .00064
            "PWSZ" 2016 327101 -.00045
            "PWSZ" 2017 332944 -.00044
            "PWSZ" 2018 341831 -.00016
            "PWSZ" 2019 343200 .00003
            "PWSZ" 2020 363087 -.00043
            "PWSZ" 2021 365495 .00005
            "PWSZ" 2022 375601 .00158
            "PF" 2013 298486 .0003319050026183776
            "PF" 2014 305412 .0005001948324480789
            "PF" 2015 311842 .0007985081569473459
            "PF" 2016 315506 -.0005416040798654688
            "PF" 2017 320698 -.0005278528938937743
            "PF" 2018 331096 -.0001929149880995439
            "PF" 2019 332542 .00003110190786916103
            "PF" 2020 350593 -.000510943167329122
            "PF" 2021 354370 .00006256227287905896
            "PF" 2022 366195 .0018336153644756272
            "PSJ" 2013 317624 .0003032423437646849
            "PSJ" 2014 325445 .00045871571071148923
            "PSJ" 2015 333137 .0007455511650518901
            "PSJ" 2016 339167 -.0005129785836156105
            "PSJ" 2017 345501 -.0005048792341583758
            "PSJ" 2018 354252 -.00018642195294759853
            "PSJ" 2019 355988 .00003056991663826257
            "PSJ" 2020 374018 -.0005155872242686359
            "PSJ" 2021 382676 .00006462658919457169
            "PSJ" 2022 393944 .001947324091091339
            "PEJ" 2013 318089 .0003513502705178821
            "PEJ" 2014 325765 .0005208560433512126
            "PEJ" 2015 333562 .0008220077975867973
            "PEJ" 2016 338511 -.0005549730283112333
            "PEJ" 2017 346611 -.0005487273964922709
            "PEJ" 2018 356381 -.00019959740587580042
            "PEJ" 2019 358598 .00003237971139437413
            "PEJ" 2020 378460 -.0005333326806562341
            "PEJ" 2021 385640 .00006567528642814265
            "PEJ" 2022 400627 .00195741840957212
            "PWJ" 2013 303624 .00023743869668571368
            "PWJ" 2014 311619 .00036552986927307617
            "PWJ" 2015 320044 .0006125858675777523
            "PWJ" 2016 325736 -.00043365079504739814
            "PWJ" 2017 330832 -.0004358822681560128
            "PWJ" 2018 340009 -.00016083665049098188
            "PWJ" 2019 340835 .000026137490525394816
            "PWJ" 2020 358475 -.0004390260180741426
            "PWJ" 2021 366523 .00005485026827635915
            "PWJ" 2022 374489 .0016747602453279266

            Comment


            • #7
              Code:
              g lincome = ln(income)
              reghdfe lincome ssm , absorb(province year)
              coefficent is 1.27.

              Comment


              • #8
                Thank you very much, George. This last bit was very helpful.

                Comment


                • #9
                  If you drop the provence fixed effect, you get the big coefficient.

                  Comment


                  • #10
                    I intend to keep province; it is looking good now. I appreciate the help.

                    Comment

                    Working...
                    X