Good morning Stata enthusiasts,
I'm working with a sample of the US Population survey on a single timeframe, and I have been tasked with creating an OLS regression with wage as a dependent variable.
I've come up with the following regression:
Where ch02 and ch35 mean having a child that is 0 to 2 years old and 3 to 5 respectively
For which I get the following output
As you can see the coefficient for ch02 and ch35 are not what you would expect. Later I thought age might be playing a role and tried to correct for that as well.
Should I leave the model like this or is there a way to further account for bias.
Thank you in advance!
I'm working with a sample of the US Population survey on a single timeframe, and I have been tasked with creating an OLS regression with wage as a dependent variable.
I've come up with the following regression:
Code:
reg wage age female i.wbhaom citizen married ch02 ch35 unmem multjob rural i(8/16).educ92 ind_m03 occ_m03 uhourse, robust
For which I get the following output
Code:
Linear regression Number of obs = 51,188 F(25, 51162) = 749.16 Prob > F = 0.0000 R-squared = 0.2255 Root MSE = 17.501 ----------------------------------------------------------------------------------------------------------- | Robust wage | Coefficient std. err. t P>|t| [95% conf. interval] ------------------------------------------+---------------------------------------------------------------- age | .3323361 .0115434 28.79 0.000 .3097109 .3549614 female | -6.888845 .2195233 -31.38 0.000 -7.319113 -6.458577 | wbhaom | Black | -2.922971 .2343337 -12.47 0.000 -3.382268 -2.463675 Hispanic | -2.052701 .1827714 -11.23 0.000 -2.410935 -1.694468 Asian | 2.248498 .3033635 7.41 0.000 1.653903 2.843094 Native American | -1.118968 .5559207 -2.01 0.044 -2.208578 -.0293573 Mixed | -1.1976 .4970338 -2.41 0.016 -2.171791 -.2234086 | citizen | 1.776596 .2450709 7.25 0.000 1.296254 2.256937 married | 1.101605 .1617439 6.81 0.000 .7845852 1.418625 ch02 | .7732423 .1877503 4.12 0.000 .4052498 1.141235 ch35 | 1.456089 .1866423 7.80 0.000 1.090268 1.82191 unmem | 1.626295 .229503 7.09 0.000 1.176467 2.076123 multjob | -.958199 .657534 -1.46 0.145 -2.246972 .3305744 rural | -2.588769 .2334876 -11.09 0.000 -3.046407 -2.131131 | educ92 | HS graduate, GED | 3.884304 .2171748 17.89 0.000 3.458639 4.309969 Some college but no degree | 5.549034 .2607023 21.28 0.000 5.038055 6.060013 Associate degree-occupational/vocational | 6.848828 .3468357 19.75 0.000 6.169026 7.528629 Associate degree-academic program | 6.359582 .2955889 21.51 0.000 5.780225 6.93894 Bachelor's degree | 14.35967 .3517009 40.83 0.000 13.67033 15.049 Master's degree | 18.80381 .4391888 42.81 0.000 17.94299 19.66462 Professional school | 24.25171 .7900214 30.70 0.000 22.70326 25.80016 Doctorate | 23.34896 .6026218 38.75 0.000 22.16782 24.53011 | ind_m03 | -.6034247 .0299504 -20.15 0.000 -.6621278 -.5447217 occ_m03 | -.9560231 .0494366 -19.34 0.000 -1.052919 -.8591269 uhourse | -.0706635 .0268196 -2.63 0.008 -.1232301 -.0180969 _cons | 17.70549 1.026504 17.25 0.000 15.69353 19.71745 -----------------------------------------------------------------------------------------------------------
As you can see the coefficient for ch02 and ch35 are not what you would expect. Later I thought age might be playing a role and tried to correct for that as well.
Code:
. reg wage age female i.wbhaom citizen married ch02#c.age ch35#c.age unmem multjob rural i(8/16).educ92 ind_m03 occ_m03 uhourse, robust Linear regression Number of obs = 51,188 F(25, 51162) = 750.99 Prob > F = 0.0000 R-squared = 0.2257 Root MSE = 17.499 ----------------------------------------------------------------------------------------------------------- | Robust wage | Coefficient std. err. t P>|t| [95% conf. interval] ------------------------------------------+---------------------------------------------------------------- age | .3265101 .0114281 28.57 0.000 .3041109 .3489092 female | -6.858415 .2209402 -31.04 0.000 -7.29146 -6.42537 | wbhaom | Black | -2.926252 .2343458 -12.49 0.000 -3.385572 -2.466932 Hispanic | -2.055904 .1827633 -11.25 0.000 -2.414122 -1.697686 Asian | 2.234674 .3033155 7.37 0.000 1.640172 2.829175 Native American | -1.115237 .5559219 -2.01 0.045 -2.20485 -.0256244 Mixed | -1.194969 .4965366 -2.41 0.016 -2.168186 -.2217523 | citizen | 1.781887 .2449796 7.27 0.000 1.301724 2.262049 married | 1.084751 .1617887 6.70 0.000 .7676433 1.401859 | ch02#c.age | 1 | .0256436 .0058975 4.35 0.000 .0140844 .0372027 | ch35#c.age | 1 | .0420193 .0055704 7.54 0.000 .0311013 .0529372 | unmem | 1.625639 .229388 7.09 0.000 1.176036 2.075242 multjob | -.9587118 .6575472 -1.46 0.145 -2.247511 .3300875 rural | -2.577298 .2332964 -11.05 0.000 -3.034561 -2.120034 | educ92 | HS graduate, GED | 3.889077 .2172296 17.90 0.000 3.463305 4.314849 Some college but no degree | 5.539726 .2607647 21.24 0.000 5.028624 6.050827 Associate degree-occupational/vocational | 6.839987 .3468462 19.72 0.000 6.160165 7.519809 Associate degree-academic program | 6.344039 .2957595 21.45 0.000 5.764347 6.923731 Bachelor's degree | 14.32684 .3522382 40.67 0.000 13.63645 15.01723 Master's degree | 18.75708 .440993 42.53 0.000 17.89273 19.62144 Professional school | 24.19602 .7909329 30.59 0.000 22.64578 25.74625 Doctorate | 23.28747 .6035842 38.58 0.000 22.10444 24.4705 | ind_m03 | -.6033473 .0299595 -20.14 0.000 -.6620682 -.5446265 occ_m03 | -.9552774 .0494302 -19.33 0.000 -1.052161 -.8583937 uhourse | -.0704938 .026829 -2.63 0.009 -.1230789 -.0179087 _cons | 17.91144 1.023001 17.51 0.000 15.90635 19.91653 -----------------------------------------------------------------------------------------------------------
Should I leave the model like this or is there a way to further account for bias.
Thank you in advance!
Comment