Dear all,
I am facing challenges with my model results being insignificant when i am running both binary and multinomial regression models. The p-values for my variables are insignificant. I am using IR(Individual Recode) file from LDHS dataset. my dependent variables are healthcare visits(no/yes), ANC visits(no anc,1 anc, 2 anc, 3 anc, >4anc) and PNC visits(no, yes, don't know). The independent variables are sex of the household(male/female), age(15-24, 25-34,35-44,45-49), marital status(never married, married, widowed, divorced), religion(non Christian, Christian), education(no education, primary, secondary, higher), occupation(non Agric, Agric), wealth index(poor, middle, rich), health insurance(no/yes), distance to health facility(not a problem, a big problem), residence(urban/rural), and anemia level.
I checked multicollinearity between my independent variables and found that education, health insurance and anemia level have VIF greater than 10 and I dropped anemia level from my models but the results are still bad. I also tried grouping my dependent variables into social, economic and other variables and ran adjusted and unadjusted binary logistic models but the more I add more variables the more the p-values become insignificant. could assist me with could be the problem.
below is the output for logistic model with dep. var as visted healthcare facilty=healtcare visits and anc visits as a dependent var. for mlogit
. logistic visited_health_facil i.sex_head i.age i.marital_status i.religion i.occupation i.wealth_index i.education i.health
> _insurance i.anemia_level i.dist_health_facility i.residence, allbaselevels
Logistic regression Number of obs = 1381
LR chi2(21) = 52.56
Prob > chi2 = 0.0002
Log likelihood = -811.04853 Pseudo R2 = 0.0314
--------------------------------------------------------------------------------------
visited_health_facil | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
---------------------+----------------------------------------------------------------
sex_head |
1 | 1 (base)
2 | 1.143418 .1782281 0.86 0.390 .8424138 1.551974
|
age |
1 | 1 (base)
2 | 1.387775 .2350928 1.93 0.053 .9956882 1.934261
3 | 1.029242 .1946897 0.15 0.879 .7104041 1.491177
4 | .787294 .1909856 -0.99 0.324 .4893823 1.266559
|
marital_status |
1 | 1 (base)
2 | 2.070133 .3705802 4.06 0.000 1.457547 2.940182
3 | 1.99339 .4860793 2.83 0.005 1.236034 3.2148
4 | 2.13516 .56519 2.87 0.004 1.270903 3.587143
|
religion |
0 | 1 (base)
1 | .7492449 .3411377 -0.63 0.526 .3069477 1.828872
|
occupation |
1 | 1 (base)
2 | 1.042236 .2027846 0.21 0.832 .7117874 1.526095
3 | 1.306453 .3640273 0.96 0.337 .7566884 2.255646
|
wealth_index |
1 | 1 (base)
2 | 1.231303 .2456395 1.04 0.297 .8328255 1.820438
3 | 1.204038 .2239029 1.00 0.318 .8362786 1.733524
|
education |
0 | 1 (base)
1 | 1.822687 1.140474 0.96 0.337 .5346957 6.213234
2 | 2.312652 1.467217 1.32 0.186 .6669326 8.019338
3 | 2.883668 1.903128 1.60 0.109 .7910059 10.51262
|
health_insurance |
0 | 1 (base)
1 | .585914 .2287483 -1.37 0.171 .2725925 1.259371
|
anemia_level |
1 | 1 (base)
2 | .5436657 .4556743 -0.73 0.467 .105171 2.810398
3 | .5967894 .4885422 -0.63 0.528 .1199535 2.969132
4 | .6273136 .5083492 -0.58 0.565 .1281462 3.070885
|
dist_health_facility |
1 | 1 (base)
2 | 1.255869 .1986669 1.44 0.150 .9210692 1.712366
|
residence |
1 | 1 (base)
2 | 1.481787 .2284155 2.55 0.011 1.095403 2.00446
|
_cons | .683371 .7689855 -0.34 0.735 .0753034 6.201529
--------------------------------------------------------------------------------------
and for mlogit
. mlogit anc i.sex_head i.age i.marital_status i.religion i.occupation i.wealth_index i.education i.health_insurance i.dist_h
> ealth_facility i.residence, base(0) allbaselevels
Iteration 0: log likelihood = -834.22496
Iteration 1: log likelihood = -788.39709
Iteration 2: log likelihood = -769.92251
Iteration 3: log likelihood = -766.73995
Iteration 4: log likelihood = -765.43096
Iteration 5: log likelihood = -765.24125
Iteration 6: log likelihood = -765.20904
Iteration 7: log likelihood = -765.20162
Iteration 8: log likelihood = -765.20002
Iteration 9: log likelihood = -765.19969
Iteration 10: log likelihood = -765.19962
Iteration 11: log likelihood = -765.1996
Multinomial logistic regression Number of obs = 1007
LR chi2(72) = 138.05
Prob > chi2 = 0.0000
Log likelihood = -765.1996 Pseudo R2 = 0.0827
--------------------------------------------------------------------------------------
anc | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------------+----------------------------------------------------------------
no_anc | (base outcome)
---------------------+----------------------------------------------------------------
1_anc |
sex_head |
1 | 0 (base)
2 | -.329742 .7014485 -0.47 0.638 -1.704556 1.045072
|
age |
1 | 0 (base)
2 | -.4331893 .6905895 -0.63 0.530 -1.78672 .9203413
3 | -.8241518 .9017629 -0.91 0.361 -2.591575 .943271
4 | -22.71515 53965.21 -0.00 1.000 -105792.6 105747.2
|
marital_status |
1 | 0 (base)
2 | -.740034 .7733469 -0.96 0.339 -2.255766 .7756982
3 | -.5553596 1.091913 -0.51 0.611 -2.695469 1.58475
4 | .2287169 1.02628 0.22 0.824 -1.782754 2.240188
|
religion |
0 | 0 (base)
1 | 15.63568 2292.172 0.01 0.995 -4476.939 4508.21
|
occupation |
1 | 0 (base)
2 | -1.080269 1.133853 -0.95 0.341 -3.302579 1.142042
3 | -14.17877 1268.27 -0.01 0.991 -2499.942 2471.584
|
wealth_index |
1 | 0 (base)
2 | .491967 .6932806 0.71 0.478 -.8668381 1.850772
3 | 1.50705 .9012047 1.67 0.094 -.2592792 3.273378
|
education |
0 | 0 (base)
1 | 14.54271 3536.721 0.00 0.997 -6917.303 6946.389
2 | 13.79664 3536.721 0.00 0.997 -6918.049 6945.643
3 | 15.83348 3536.721 0.00 0.996 -6916.013 6947.68
|
health_insurance |
0 | 0 (base)
1 | -.3619751 2590.434 -0.00 1.000 -5077.52 5076.796
|
dist_health_facility |
1 | 0 (base)
2 | -.5606672 .60041 -0.93 0.350 -1.737449 .6161149
|
residence |
1 | 0 (base)
2 | 1.237727 .8231029 1.50 0.133 -.3755252 2.850979
|
_cons | -30.81201 4214.552 -0.01 0.994 -8291.182 8229.558
---------------------+----------------------------------------------------------------
2_anc |
sex_head |
1 | 0 (base)
2 | .1294843 .5480576 0.24 0.813 -.9446889 1.203658
|
age |
1 | 0 (base)
2 | -.5225949 .5352125 -0.98 0.329 -1.571592 .5264022
3 | -.9272794 .6835562 -1.36 0.175 -2.267025 .4124661
4 | -22.70876 40325.85 -0.00 1.000 -79059.92 79014.5
|
marital_status |
1 | 0 (base)
2 | -.2348144 .6023835 -0.39 0.697 -1.415464 .9458355
3 | -.271298 .8733921 -0.31 0.756 -1.983115 1.440519
4 | -.359796 .9233147 -0.39 0.697 -2.16946 1.449868
|
religion |
0 | 0 (base)
1 | 1.27302 1.172576 1.09 0.278 -1.025186 3.571226
|
occupation |
1 | 0 (base)
2 | .9408899 .5775266 1.63 0.103 -.1910415 2.072821
3 | .1172866 1.054219 0.11 0.911 -1.948945 2.183518
|
wealth_index |
1 | 0 (base)
2 | -.3629362 .5734962 -0.63 0.527 -1.486968 .7610957
3 | 1.536379 .6960343 2.21 0.027 .1721765 2.900581
|
education |
0 | 0 (base)
1 | 14.53064 2606.367 0.01 0.996 -5093.854 5122.915
2 | 14.59 2606.367 0.01 0.996 -5093.795 5122.975
3 | 16.1912 2606.367 0.01 0.995 -5092.194 5124.576
|
health_insurance |
0 | 0 (base)
1 | -1.118786 2170.781 -0.00 1.000 -4255.772 4253.535
|
dist_health_facility |
1 | 0 (base)
2 | -.0560826 .4807543 -0.12 0.907 -.9983437 .8861785
|
residence |
1 | 0 (base)
2 | .9513053 .5927119 1.61 0.108 -.2103887 2.112999
|
_cons | -16.42487 2606.367 -0.01 0.995 -5124.81 5091.96
---------------------+----------------------------------------------------------------
3_anc |
sex_head |
1 | 0 (base)
2 | .3657479 .4530789 0.81 0.420 -.5222705 1.253766
|
age |
1 | 0 (base)
2 | -.8335228 .4480069 -1.86 0.063 -1.7116 .0445545
3 | -1.260563 .5548512 -2.27 0.023 -2.348051 -.1730747
4 | -2.803699 1.385748 -2.02 0.043 -5.519715 -.0876828
|
marital_status |
1 | 0 (base)
2 | 1.147784 .5403055 2.12 0.034 .0888047 2.206763
3 | .3858069 .7479268 0.52 0.606 -1.080103 1.851717
4 | .7980124 .7432406 1.07 0.283 -.6587124 2.254737
|
religion |
0 | 0 (base)
1 | 1.244329 .8188686 1.52 0.129 -.3606241 2.849282
|
occupation |
1 | 0 (base)
2 | .4372587 .5049878 0.87 0.387 -.5524992 1.427017
3 | .3387942 .8574201 0.40 0.693 -1.341718 2.019307
|
wealth_index |
1 | 0 (base)
2 | -.0381724 .4409004 -0.09 0.931 -.9023213 .8259764
3 | 1.454559 .5976732 2.43 0.015 .2831414 2.625977
|
education |
0 | 0 (base)
1 | -.1201417 1.530855 -0.08 0.937 -3.120563 2.88028
2 | .1921436 1.545194 0.12 0.901 -2.83638 3.220667
3 | -.9385856 1.984304 -0.47 0.636 -4.82775 2.950579
|
health_insurance |
0 | 0 (base)
1 | -.4433399 1739.733 -0.00 1.000 -3410.256 3409.37
|
dist_health_facility |
1 | 0 (base)
2 | -.1462628 .3913177 -0.37 0.709 -.9132315 .6207058
|
residence |
1 | 0 (base)
2 | .0904916 .4693694 0.19 0.847 -.8294555 1.010439
|
_cons | -.8789839 1.766947 -0.50 0.619 -4.342136 2.584168
---------------------+----------------------------------------------------------------
more_than_4_anc |
sex_head |
1 | 0 (base)
2 | .3921699 .4079782 0.96 0.336 -.4074526 1.191792
|
age |
1 | 0 (base)
2 | -.4984575 .4122573 -1.21 0.227 -1.306467 .3095518
3 | -.5268547 .4895854 -1.08 0.282 -1.486424 .4327151
4 | -2.741161 1.080447 -2.54 0.011 -4.858797 -.6235246
|
marital_status |
1 | 0 (base)
2 | 1.027777 .4681133 2.20 0.028 .110292 1.945262
3 | .0765875 .6221826 0.12 0.902 -1.142868 1.296043
4 | .4058348 .648109 0.63 0.531 -.8644355 1.676105
|
religion |
0 | 0 (base)
1 | 1.171346 .6235753 1.88 0.060 -.0508393 2.393531
|
occupation |
1 | 0 (base)
2 | .2315969 .4573088 0.51 0.613 -.6647119 1.127906
3 | .4891797 .7640979 0.64 0.522 -1.008425 1.986784
|
wealth_index |
1 | 0 (base)
2 | .1614292 .3793904 0.43 0.670 -.5821623 .9050208
3 | 1.896817 .5480776 3.46 0.001 .8226045 2.971029
|
education |
0 | 0 (base)
1 | -.5022687 1.189478 -0.42 0.673 -2.833603 1.829065
2 | -.1430182 1.203612 -0.12 0.905 -2.502055 2.216019
3 | .5765912 1.583689 0.36 0.716 -2.527382 3.680565
|
health_insurance |
0 | 0 (base)
1 | 13.80465 1463.784 0.01 0.992 -2855.159 2882.768
|
dist_health_facility |
1 | 0 (base)
2 | .0789787 .347216 0.23 0.820 -.6015522 .7595096
|
residence |
1 | 0 (base)
2 | .2735681 .4201572 0.65 0.515 -.5499249 1.097061
|
_cons | .5474843 1.358957 0.40 0.687 -2.116023 3.210992
--------------------------------------------------------------------------------------
I am facing challenges with my model results being insignificant when i am running both binary and multinomial regression models. The p-values for my variables are insignificant. I am using IR(Individual Recode) file from LDHS dataset. my dependent variables are healthcare visits(no/yes), ANC visits(no anc,1 anc, 2 anc, 3 anc, >4anc) and PNC visits(no, yes, don't know). The independent variables are sex of the household(male/female), age(15-24, 25-34,35-44,45-49), marital status(never married, married, widowed, divorced), religion(non Christian, Christian), education(no education, primary, secondary, higher), occupation(non Agric, Agric), wealth index(poor, middle, rich), health insurance(no/yes), distance to health facility(not a problem, a big problem), residence(urban/rural), and anemia level.
I checked multicollinearity between my independent variables and found that education, health insurance and anemia level have VIF greater than 10 and I dropped anemia level from my models but the results are still bad. I also tried grouping my dependent variables into social, economic and other variables and ran adjusted and unadjusted binary logistic models but the more I add more variables the more the p-values become insignificant. could assist me with could be the problem.
below is the output for logistic model with dep. var as visted healthcare facilty=healtcare visits and anc visits as a dependent var. for mlogit
. logistic visited_health_facil i.sex_head i.age i.marital_status i.religion i.occupation i.wealth_index i.education i.health
> _insurance i.anemia_level i.dist_health_facility i.residence, allbaselevels
Logistic regression Number of obs = 1381
LR chi2(21) = 52.56
Prob > chi2 = 0.0002
Log likelihood = -811.04853 Pseudo R2 = 0.0314
--------------------------------------------------------------------------------------
visited_health_facil | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
---------------------+----------------------------------------------------------------
sex_head |
1 | 1 (base)
2 | 1.143418 .1782281 0.86 0.390 .8424138 1.551974
|
age |
1 | 1 (base)
2 | 1.387775 .2350928 1.93 0.053 .9956882 1.934261
3 | 1.029242 .1946897 0.15 0.879 .7104041 1.491177
4 | .787294 .1909856 -0.99 0.324 .4893823 1.266559
|
marital_status |
1 | 1 (base)
2 | 2.070133 .3705802 4.06 0.000 1.457547 2.940182
3 | 1.99339 .4860793 2.83 0.005 1.236034 3.2148
4 | 2.13516 .56519 2.87 0.004 1.270903 3.587143
|
religion |
0 | 1 (base)
1 | .7492449 .3411377 -0.63 0.526 .3069477 1.828872
|
occupation |
1 | 1 (base)
2 | 1.042236 .2027846 0.21 0.832 .7117874 1.526095
3 | 1.306453 .3640273 0.96 0.337 .7566884 2.255646
|
wealth_index |
1 | 1 (base)
2 | 1.231303 .2456395 1.04 0.297 .8328255 1.820438
3 | 1.204038 .2239029 1.00 0.318 .8362786 1.733524
|
education |
0 | 1 (base)
1 | 1.822687 1.140474 0.96 0.337 .5346957 6.213234
2 | 2.312652 1.467217 1.32 0.186 .6669326 8.019338
3 | 2.883668 1.903128 1.60 0.109 .7910059 10.51262
|
health_insurance |
0 | 1 (base)
1 | .585914 .2287483 -1.37 0.171 .2725925 1.259371
|
anemia_level |
1 | 1 (base)
2 | .5436657 .4556743 -0.73 0.467 .105171 2.810398
3 | .5967894 .4885422 -0.63 0.528 .1199535 2.969132
4 | .6273136 .5083492 -0.58 0.565 .1281462 3.070885
|
dist_health_facility |
1 | 1 (base)
2 | 1.255869 .1986669 1.44 0.150 .9210692 1.712366
|
residence |
1 | 1 (base)
2 | 1.481787 .2284155 2.55 0.011 1.095403 2.00446
|
_cons | .683371 .7689855 -0.34 0.735 .0753034 6.201529
--------------------------------------------------------------------------------------
and for mlogit
. mlogit anc i.sex_head i.age i.marital_status i.religion i.occupation i.wealth_index i.education i.health_insurance i.dist_h
> ealth_facility i.residence, base(0) allbaselevels
Iteration 0: log likelihood = -834.22496
Iteration 1: log likelihood = -788.39709
Iteration 2: log likelihood = -769.92251
Iteration 3: log likelihood = -766.73995
Iteration 4: log likelihood = -765.43096
Iteration 5: log likelihood = -765.24125
Iteration 6: log likelihood = -765.20904
Iteration 7: log likelihood = -765.20162
Iteration 8: log likelihood = -765.20002
Iteration 9: log likelihood = -765.19969
Iteration 10: log likelihood = -765.19962
Iteration 11: log likelihood = -765.1996
Multinomial logistic regression Number of obs = 1007
LR chi2(72) = 138.05
Prob > chi2 = 0.0000
Log likelihood = -765.1996 Pseudo R2 = 0.0827
--------------------------------------------------------------------------------------
anc | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------------+----------------------------------------------------------------
no_anc | (base outcome)
---------------------+----------------------------------------------------------------
1_anc |
sex_head |
1 | 0 (base)
2 | -.329742 .7014485 -0.47 0.638 -1.704556 1.045072
|
age |
1 | 0 (base)
2 | -.4331893 .6905895 -0.63 0.530 -1.78672 .9203413
3 | -.8241518 .9017629 -0.91 0.361 -2.591575 .943271
4 | -22.71515 53965.21 -0.00 1.000 -105792.6 105747.2
|
marital_status |
1 | 0 (base)
2 | -.740034 .7733469 -0.96 0.339 -2.255766 .7756982
3 | -.5553596 1.091913 -0.51 0.611 -2.695469 1.58475
4 | .2287169 1.02628 0.22 0.824 -1.782754 2.240188
|
religion |
0 | 0 (base)
1 | 15.63568 2292.172 0.01 0.995 -4476.939 4508.21
|
occupation |
1 | 0 (base)
2 | -1.080269 1.133853 -0.95 0.341 -3.302579 1.142042
3 | -14.17877 1268.27 -0.01 0.991 -2499.942 2471.584
|
wealth_index |
1 | 0 (base)
2 | .491967 .6932806 0.71 0.478 -.8668381 1.850772
3 | 1.50705 .9012047 1.67 0.094 -.2592792 3.273378
|
education |
0 | 0 (base)
1 | 14.54271 3536.721 0.00 0.997 -6917.303 6946.389
2 | 13.79664 3536.721 0.00 0.997 -6918.049 6945.643
3 | 15.83348 3536.721 0.00 0.996 -6916.013 6947.68
|
health_insurance |
0 | 0 (base)
1 | -.3619751 2590.434 -0.00 1.000 -5077.52 5076.796
|
dist_health_facility |
1 | 0 (base)
2 | -.5606672 .60041 -0.93 0.350 -1.737449 .6161149
|
residence |
1 | 0 (base)
2 | 1.237727 .8231029 1.50 0.133 -.3755252 2.850979
|
_cons | -30.81201 4214.552 -0.01 0.994 -8291.182 8229.558
---------------------+----------------------------------------------------------------
2_anc |
sex_head |
1 | 0 (base)
2 | .1294843 .5480576 0.24 0.813 -.9446889 1.203658
|
age |
1 | 0 (base)
2 | -.5225949 .5352125 -0.98 0.329 -1.571592 .5264022
3 | -.9272794 .6835562 -1.36 0.175 -2.267025 .4124661
4 | -22.70876 40325.85 -0.00 1.000 -79059.92 79014.5
|
marital_status |
1 | 0 (base)
2 | -.2348144 .6023835 -0.39 0.697 -1.415464 .9458355
3 | -.271298 .8733921 -0.31 0.756 -1.983115 1.440519
4 | -.359796 .9233147 -0.39 0.697 -2.16946 1.449868
|
religion |
0 | 0 (base)
1 | 1.27302 1.172576 1.09 0.278 -1.025186 3.571226
|
occupation |
1 | 0 (base)
2 | .9408899 .5775266 1.63 0.103 -.1910415 2.072821
3 | .1172866 1.054219 0.11 0.911 -1.948945 2.183518
|
wealth_index |
1 | 0 (base)
2 | -.3629362 .5734962 -0.63 0.527 -1.486968 .7610957
3 | 1.536379 .6960343 2.21 0.027 .1721765 2.900581
|
education |
0 | 0 (base)
1 | 14.53064 2606.367 0.01 0.996 -5093.854 5122.915
2 | 14.59 2606.367 0.01 0.996 -5093.795 5122.975
3 | 16.1912 2606.367 0.01 0.995 -5092.194 5124.576
|
health_insurance |
0 | 0 (base)
1 | -1.118786 2170.781 -0.00 1.000 -4255.772 4253.535
|
dist_health_facility |
1 | 0 (base)
2 | -.0560826 .4807543 -0.12 0.907 -.9983437 .8861785
|
residence |
1 | 0 (base)
2 | .9513053 .5927119 1.61 0.108 -.2103887 2.112999
|
_cons | -16.42487 2606.367 -0.01 0.995 -5124.81 5091.96
---------------------+----------------------------------------------------------------
3_anc |
sex_head |
1 | 0 (base)
2 | .3657479 .4530789 0.81 0.420 -.5222705 1.253766
|
age |
1 | 0 (base)
2 | -.8335228 .4480069 -1.86 0.063 -1.7116 .0445545
3 | -1.260563 .5548512 -2.27 0.023 -2.348051 -.1730747
4 | -2.803699 1.385748 -2.02 0.043 -5.519715 -.0876828
|
marital_status |
1 | 0 (base)
2 | 1.147784 .5403055 2.12 0.034 .0888047 2.206763
3 | .3858069 .7479268 0.52 0.606 -1.080103 1.851717
4 | .7980124 .7432406 1.07 0.283 -.6587124 2.254737
|
religion |
0 | 0 (base)
1 | 1.244329 .8188686 1.52 0.129 -.3606241 2.849282
|
occupation |
1 | 0 (base)
2 | .4372587 .5049878 0.87 0.387 -.5524992 1.427017
3 | .3387942 .8574201 0.40 0.693 -1.341718 2.019307
|
wealth_index |
1 | 0 (base)
2 | -.0381724 .4409004 -0.09 0.931 -.9023213 .8259764
3 | 1.454559 .5976732 2.43 0.015 .2831414 2.625977
|
education |
0 | 0 (base)
1 | -.1201417 1.530855 -0.08 0.937 -3.120563 2.88028
2 | .1921436 1.545194 0.12 0.901 -2.83638 3.220667
3 | -.9385856 1.984304 -0.47 0.636 -4.82775 2.950579
|
health_insurance |
0 | 0 (base)
1 | -.4433399 1739.733 -0.00 1.000 -3410.256 3409.37
|
dist_health_facility |
1 | 0 (base)
2 | -.1462628 .3913177 -0.37 0.709 -.9132315 .6207058
|
residence |
1 | 0 (base)
2 | .0904916 .4693694 0.19 0.847 -.8294555 1.010439
|
_cons | -.8789839 1.766947 -0.50 0.619 -4.342136 2.584168
---------------------+----------------------------------------------------------------
more_than_4_anc |
sex_head |
1 | 0 (base)
2 | .3921699 .4079782 0.96 0.336 -.4074526 1.191792
|
age |
1 | 0 (base)
2 | -.4984575 .4122573 -1.21 0.227 -1.306467 .3095518
3 | -.5268547 .4895854 -1.08 0.282 -1.486424 .4327151
4 | -2.741161 1.080447 -2.54 0.011 -4.858797 -.6235246
|
marital_status |
1 | 0 (base)
2 | 1.027777 .4681133 2.20 0.028 .110292 1.945262
3 | .0765875 .6221826 0.12 0.902 -1.142868 1.296043
4 | .4058348 .648109 0.63 0.531 -.8644355 1.676105
|
religion |
0 | 0 (base)
1 | 1.171346 .6235753 1.88 0.060 -.0508393 2.393531
|
occupation |
1 | 0 (base)
2 | .2315969 .4573088 0.51 0.613 -.6647119 1.127906
3 | .4891797 .7640979 0.64 0.522 -1.008425 1.986784
|
wealth_index |
1 | 0 (base)
2 | .1614292 .3793904 0.43 0.670 -.5821623 .9050208
3 | 1.896817 .5480776 3.46 0.001 .8226045 2.971029
|
education |
0 | 0 (base)
1 | -.5022687 1.189478 -0.42 0.673 -2.833603 1.829065
2 | -.1430182 1.203612 -0.12 0.905 -2.502055 2.216019
3 | .5765912 1.583689 0.36 0.716 -2.527382 3.680565
|
health_insurance |
0 | 0 (base)
1 | 13.80465 1463.784 0.01 0.992 -2855.159 2882.768
|
dist_health_facility |
1 | 0 (base)
2 | .0789787 .347216 0.23 0.820 -.6015522 .7595096
|
residence |
1 | 0 (base)
2 | .2735681 .4201572 0.65 0.515 -.5499249 1.097061
|
_cons | .5474843 1.358957 0.40 0.687 -2.116023 3.210992
--------------------------------------------------------------------------------------
Comment