Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Paneldata masterthesis

    Dear Stata-fan

    I am currently working on a panel data. I just don't really know what I'm doing anymore. I was wondering if anyone could help me start processing the data in STATA and see what kind of regression I need. I'm thinking of an xtpoisson regression myself. I also don't know whether it is fixed or random data. Any help is welcome. Also i think i need to generate some LN variables Yours sincerely Ward Bruurs
    Land Jaar AV_Aantal_Farmabedrijven OV1_Hoogopgeleiden OV2_Academische_Instituten OV3_Marktpotentieel OV4_Chemiebedrijven OV5_Overheidssubsidies OV6_Uitgaven_Gezondheidszorg CV1_Grootte_Land CV2_Populatie CV3_GDP_Groei CV4_GDP_Per_Capita CV5_Inflatie CV6_Bedrijfsbelasting
    België 2008 1,33 5,68 0,73 40 203 6,58 1,94 9,60 30 528 10 709 973 0,45 48 303,40 4,49 33,99
    België 2009 1,32 5,97 0,73 36 386 6,07 2,00 10,32 30 528 10 796 493 -2,02 44 760,29 -0,05 33,99
    België 2010 1,20 6,20 0,68 38 440 5,91 2,06 10,20 30 528 10 895 586 2,86 44 184,95 2,19 33,99
    België 2011 1,26 6,38 0,63 42 264 6,17 2,17 10,36 30 528 11 038 264 1,69 47 410,57 3,53 33,99
    België 2012 1,13 6,57 0,63 42 132 6,26 2,28 10,50 30 528 11 106 932 0,74 44 670,56 2,84 33,99
    België 2013 1,03 6,71 0,58 42 285 4,99 2,33 10,58 30 528 11 159 407 0,46 46 757,95 1,11 33,99
    België 2014 0,98 6,81 0,58 42 679 5,83 2,37 10,61 30 528 11 209 057 1,58 47 764,07 0,34 33,99
    België 2015 0,89 6,91 0,57 39 034 5,22 2,43 10,80 30 528 11 274 196 2,04 41 008,30 0,56 33,99
    België 2016 0,87 6,94 0,56 38 555 4,96 2,52 10,79 30 528 11 331 422 1,27 42 012,62 1,97 33,99
    België 2017 1,13 7,18 0,66 40 022 5,40 2,67 10,80 30 528 11 375 158 1,62 44 198,48 2,13 33,99
    België 2018 1,46 7,02 0,66 42 202 5,62 2,86 10,86 30 528 11 427 054 1,79 47 544,98 2,05 29,58
    België 2019 1,71 7,05 0,65 41 919 7,01 3,16 10,80 30 528 11 488 980 2,24 46 641,72 1,44 29,58
    België 2020 1,51 7,06 0,65 40 439 6,32 3,40 11,20 30 528 11 538 604 -5,26 45 609,00 0,74 25,00
    Duitsland 2008 0,67 3,74 0,48 39 429 3,49 2,62 8,09 357 022 82 110 097 0,96 45 612,71 2,63 30,18
    Duitsland 2009 0,89 3,93 0,50 35 894 3,82 2,74 8,96 357 022 81 902 307 -5,69 41 650,37 0,31 30,18
    Duitsland 2010 0,77 4,11 0,50 37 856 3,86 2,73 9,06 357 022 81 776 930 4,18 41 572,46 1,10 30,18
    Duitsland 2011 0,75 4,49 0,46 41 332 3,92 2,81 10,49 357 022 80 274 983 3,93 46 705,90 2,08 30,18
    Duitsland 2012 0,70 4,70 0,47 41 208 3,94 2,88 10,67 357 022 80 425 823 0,42 43 855,85 2,01 30,18
    Duitsland 2013 0,80 4,90 0,48 41 280 4,05 2,84 10,67 357 022 80 645 605 0,44 46 298,92 1,50 30,18
    Duitsland 2014 0,83 5,05 0,48 41 451 3,93 2,88 10,73 357 022 80 982 500 2,21 48 023,87 0,91 30,18
    Duitsland 2015 0,68 5,13 0,48 37 886 3,74 2,93 10,75 357 022 81 686 611 1,49 41 103,26 0,51 30,18
    Duitsland 2016 0,71 5,20 0,47 37 511 3,79 2,94 10,66 357 022 82 348 669 2,23 42 136,12 0,49 30,18
    Duitsland 2017 0,63 5,27 0,49 38 944 3,65 3,05 10,66 357 022 82 657 002 2,68 44 652,59 1,51 30,18
    Duitsland 2018 0,64 5,32 0,48 41 069 3,83 3,11 10,74 357 022 82 905 782 0,98 47 939,28 1,73 29,83
    Duitsland 2019 0,67 5,38 0,48 40 836 3,95 3,17 10,97 357 022 83 092 962 1,08 46 805,14 1,45 29,90
    Duitsland 2020 0,82 5,51 0,48 39 272 4,48 3,13 11,01 357 022 83 160 871 -3,83 46 749,48 0,14 29,90
    Roemenië 2008 0,65 7,45 0,52 42 780 4,86 0,55 8,01 238 391 20 537 875 9,31 10 435,22 7,85 16,00
    Roemenië 2009 0,61 7,84 0,52 39 122 4,69 0,44 8,40 238 391 20 367 487 -5,52 8 548,05 5,59 16,00
    Roemenië 2010 0,63 7,20 0,53 41 126 4,41 0,45 7,95 238 391 20 246 871 -3,90 8 397,81 6,09 16,00
    Roemenië 2011 0,58 6,33 0,53 45 069 4,10 0,47 7,79 238 391 20 147 528 4,52 9 560,16 5,79 16,00
    Roemenië 2012 0,62 5,16 0,53 44 691 4,11 0,46 7,74 238 391 20 058 035 1,92 8 930,73 3,33 16,00
    Roemenië 2013 0,69 4,55 0,50 44 983 4,32 0,39 7,98 238 391 19 983 693 0,27 9 497,21 3,98 16,00
    Roemenië 2014 0,68 4,29 0,48 45 222 4,42 0,38 8,40 238 391 19 908 979 4,12 10 031,34 1,07 16,00
    Roemenië 2015 0,66 4,05 0,48 40 983 4,40 0,49 8,91 238 391 19 815 616 3,16 8 976,95 -0,59 16,00
    Roemenië 2016 0,65 4,05 0,48 40 727 4,32 0,49 9,17 238 391 19 702 267 2,86 9 404,38 -1,54 16,00
    Roemenië 2017 0,66 4,08 0,48 42 281 4,30 0,51 9,47 238 391 19 588 715 8,20 10 727,97 1,34 16,00
    Roemenië 2018 0,67 4,19 0,48 44 484 4,52 0,50 9,47 238 391 19 473 970 6,03 12 494,42 4,63 16,00
    Roemenië 2019 0,63 4,20 0,47 44 041 4,57 0,48 9,61 238 391 19 371 648 3,85 12 958,00 3,83 16,00
    Roemenië 2020 0,66 4,32 0,47 42 506 4,74 0,47 10,12 238 391 19 265 250 -3,68 13 047,46 2,63 16,00
    China 2008 0,49 2,77 0,17 39 506 2,13 1,45 8,53 9 596 960 1 324 655 000 9,65 3 468,33 5,93 25,00
    China 2009 0,51 3,02 0,17 36 133 2,16 1,66 8,95 9 596 960 1 331 260 000 9,40 3 832,23 -0,73 25,00
    China 2010 0,53 3,18 0,18 38 123 2,21 1,71 8,92 9 596 960 1 337 705 000 10,64 4 550,47 3,18 25,00
    China 2011 0,44 3,20 0,18 41 832 1,68 1,78 8,77 9 596 960 1 345 035 000 9,55 5 614,39 5,55 25,00
    China 2012 0,47 3,31 0,18 41 572 1,82 1,91 8,78 9 596 960 1 354 190 000 7,86 6 300,58 2,62 25,00
    China 2013 0,48 3,46 0,18 41 490 1,78 2,00 8,78 9 596 960 1 363 240 000 7,77 7 020,39 2,62 25,00
    China 2014 0,52 4,24 0,18 41 496 1,84 2,02 8,87 9 596 960 1 371 860 000 7,43 7 636,07 1,92 25,00
    China 2015 0,54 4,39 0,19 37 597 1,83 2,06 8,86 9 596 960 1 379 860 000 7,04 8 016,45 1,44 25,00
    China 2016 0,54 4,44 0,19 37 436 1,77 2,10 8,73 9 596 960 1 387 790 000 6,85 8 094,39 2,00 25,00
    China 2017 0,54 4,47 0,19 38 912 1,67 2,12 8,68 9 596 960 1 396 215 000 6,95 8 817,05 1,59 25,00
    China 2018 0,54 4,57 0,19 40 981 1,68 2,14 8,68 9 596 960 1 402 760 000 6,75 9 905,41 2,07 25,00
    China 2019 0,53 4,79 0,19 40 661 1,53 2,24 8,66 9 596 960 1 407 745 000 5,95 10 143,86 2,90 25,00
    China 2020 0,58 5,13 0,19 39 245 1,56 2,41 9,63 9 596 960 1 411 100 000 2,24 10 408,72 2,42 25,00
    Turkije 2008 0,22 5,23 0,18 41 466 4,78 0,69 3,89 783 562 71051678 0,82 10 843,50 10,44 20,00
    Turkije 2009 0,35 5,96 0,19 37 925 7,89 0,80 4,34 783 562 72039206 -4,82 9 013,00 6,25 20,00
    Turkije 2010 0,35 7,09 0,21 39 675 7,96 0,79 4,19 783 562 73142150 8,43 10 622,70 8,57 20,00
    Turkije 2011 0,36 7,57 0,21 43 600 7,73 0,79 4,31 783 562 74223629 11,20 11 300,79 6,47 20,00
    Turkije 2012 0,40 8,55 0,21 43 133 7,23 0,83 4,57 783 562 75175827 4,79 11 713,28 8,89 20,00
    Turkije 2013 0,43 9,67 0,22 43 335 6,61 0,81 4,74 783 562 76147624 8,49 12 578,19 7,49 20,00
    Turkije 2014 0,42 10,52 0,22 43 672 6,31 0,86 4,80 783 562 77181884 4,94 12 165,22 8,85 20,00
    Turkije 2015 0,42 11,52 0,23 39 591 6,42 0,88 4,96 783 562 78218479 6,08 11 050,00 7,67 20,00
    Turkije 2016 0,45 12,57 0,23 39 407 6,46 1,12 4,98 783 562 79277962 3,32 10 970,05 7,78 20,00
    Turkije 2017 0,48 13,40 0,23 41 159 6,73 1,18 5,05 783 562 80312698 7,50 10 695,55 11,14 20,00
    Turkije 2018 0,52 13,94 0,25 43 721 6,97 1,27 5,15 783 562 81407204 3,01 9 568,84 16,33 22,00
    Turkije 2019 0,57 14,18 0,25 43 423 7,27 1,32 5,37 783 562 82579440 0,82 9 215,44 15,18 22,00
    Turkije 2020 0,67 14,45 0,25 42 022 7,89 1,37 5,66 783 562 83384680 1,86 8 638,74 12,28 22,00
    Japan 2008 0,27 4,75 3,29 34 370 3,91 3,29 15,21 377 915 128 063 000 -1,22 39 876,30 1,38 39,54
    Japan 2009 0,29 4,76 3,26 30 899 3,77 3,20 16,20 377 915 128 047 000 -5,69 41 309,00 -1,35 39,54
    Japan 2010 0,29 4,75 3,23 32 515 3,70 3,10 16,20 377 915 128 070 000 4,10 44 968,16 -0,73 39,54
    Japan 2011 0,27 4,83 3,18 35 848 3,92 3,21 16,14 377 915 127 833 000 0,02 48 760,08 -0,27 39,54
    Japan 2012 0,27 4,88 3,18 35 657 3,75 3,17 16,12 377 915 127 629 000 1,37 49 145,28 -0,04 39,54
    Japan 2013 0,26 4,93 3,15 36 731 3,70 3,28 15,99 377 915 127 445 000 2,01 40 898,65 0,34 36,99
    Japan 2014 0,24 5,00 3,15 37 112 3,67 3,37 16,20 377 915 127 276 000 0,30 38 475,40 2,76 36,99
    Japan 2015 0,24 5,04 3,15 33 770 3,90 3,24 16,49 377 915 127 141 000 1,56 34 960,64 0,80 32,11
    Japan 2016 0,23 5,09 3,14 33 032 3,62 3,11 16,80 377 915 127 076 000 0,75 39 375,47 -0,13 29,97
    Japan 2017 0,23 5,13 3,13 34 663 3,63 3,17 16,77 377 915 126 972 000 1,68 38 834,05 0,48 29,97
    Japan 2018 0,24 5,17 3,13 36 734 3,64 3,22 16,63 377 915 126 811 000 0,64 39 751,13 0,99 29,74
    Japan 2019 0,23 5,22 3,13 36 363 3,67 3,22 16,67 377 915 126 633 000 -0,40 40 415,96 0,47 29,74
    Japan 2020 0,24 5,26 3,13 35 046 3,94 3,27 18,76 377 915 126 261 000 -4,28 39 986,93 -0,02 29,74
    Australië 2008 1,92 7,43 0,52 31 744 9,67 2,40 8,25 7 741 220 21 249 199 3,59 49 701,28 4,35 30,00
    Australië 2009 1,82 7,75 0,54 29 345 9,32 2,40 8,55 7 741 220 21 691 653 1,89 42 816,57 1,77 30,00
    Australië 2010 1,74 8,03 0,57 30 312 9,25 2,37 8,42 7 741 220 22 031 750 2,23 52 147,02 2,92 30,00
    Australië 2011 1,74 8,13 0,56 32 783 8,91 2,23 8,54 7 741 220 22 340 024 2,41 62 609,66 3,30 30,00
    Australië 2012 1,70 8,26 0,57 32 057 8,79 2,23 8,68 7 741 220 22 733 465 3,92 68 078,04 1,76 30,00
    Australië 2013 1,69 8,52 0,60 32 131 8,73 2,18 8,75 7 741 220 23 128 129 2,61 68 198,42 2,45 30,00
    Australië 2014 1,61 8,81 0,60 32 805 8,32 2,18 9,83 7 741 220 23 475 686 2,61 62 558,24 2,49 30,00
    Australië 2015 1,60 8,95 0,58 29 842 8,00 1,92 10,18 7 741 220 23 815 995 2,20 56 758,87 1,51 30,00
    Australië 2016 1,66 9,14 0,60 30 357 8,02 1,92 10,09 7 741 220 24 190 907 2,78 49 918,79 1,28 30,00
    Australië 2017 1,80 9,36 0,55 31 414 8,05 1,88 10,12 7 741 220 24 592 588 2,32 53 954,55 1,95 30,00
    Australië 2018 1,87 9,55 0,54 33 104 8,26 1,88 10,06 7 741 220 24 963 258 2,91 57 273,52 1,91 30,00
    Australië 2019 2,02 9,72 0,53 33 061 8,64 1,83 10,22 7 741 220 25 334 826 2,18 55 049,57 1,61 30,00
    Australië 2020 2,11 9,70 0,53 32 082 8,90 1,83 10,68 7 741 220 25 649 248 -0,33 51 868,25 0,85 30,00
    Verenigde Staten 2008 0,65 9,34 1,45 33 925 4,49 2,74 5,02 9 833 517 304 093 966 0,12 48 570,05 3,84 39,25
    Verenigde Staten 2009 0,63 9,86 1,47 30 699 4,28 2,79 5,28 9 833 517 306 771 529 -2,60 47 194,94 -0,36 39,16
    Verenigde Staten 2010 0,63 10,13 1,49 32 487 4,18 2,71 5,64 9 833 517 309 327 143 2,71 48 650,64 1,64 39,21
    Verenigde Staten 2011 0,64 10,07 1,51 36 051 4,14 2,74 4,48 9 833 517 311 583 481 1,55 50 065,97 3,16 39,19
    Verenigde Staten 2012 0,68 9,72 1,51 35 610 4,24 2,67 4,51 9 833 517 313 877 662 2,28 51 784,42 2,07 39,13
    Verenigde Staten 2013 0,67 9,68 1,49 35 644 4,10 2,70 5,22 9 833 517 316 059 947 1,84 53 291,13 1,46 39,05
    Verenigde Staten 2014 0,68 9,55 1,45 35 633 4,11 2,72 5,03 9 833 517 318 386 329 2,29 55 123,85 1,62 39,08
    Verenigde Staten 2015 0,71 9,39 1,43 31 641 4,11 2,79 4,94 9 833 517 320 738 994 2,71 56 762,73 0,12 39,00
    Verenigde Staten 2016 0,73 9,29 1,35 31 299 4,17 2,85 5,08 9 833 517 323 071 755 1,67 57 866,74 1,26 38,92
    Verenigde Staten 2017 0,73 9,23 1,33 32 641 4,13 2,90 5,19 9 833 517 325 122 128 2,24 59 907,75 2,13 38,91
    Verenigde Staten 2018 0,76 9,15 1,24 34 493 4,17 3,01 5,52 9 833 517 326 838 199 2,95 62 823,31 2,44 25,84
    Verenigde Staten 2019 0,81 9,13 1,21 33 940 4,21 3,17 5,71 9 833 517 328 329 953 2,29 65 120,39 1,81 25,89
    Verenigde Staten 2020 0,66 8,79 1,19 32 719 4,22 3,47 6,23 9 833 517 331 511 512 -2,77 63 528,63 1,23 25,77
    Brazilië 2008 0,37 5,68 1,17 37 449 4,14 1,13 10,25 8 515 770 192 672 317 5,09 8 801,76 5,68 34,00
    Brazilië 2009 0,32 5,97 1,19 34 171 3,49 1,12 11,24 8 515 770 194 517 549 -0,13 8 569,90 4,89 34,00
    Brazilië 2010 0,34 6,20 1,21 35 810 3,62 1,16 11,10 8 515 770 196 353 492 7,53 11 249,29 5,04 34,00
    Brazilië 2011 0,29 6,38 1,19 39 240 3,63 1,14 10,78 8 515 770 198 185 302 3,97 13 200,56 6,64 34,00
    Brazilië 2012 0,27 6,57 1,21 39 129 3,79 1,13 10,85 8 515 770 199 977 707 1,92 12 327,51 5,40 34,00
    Brazilië 2013 0,27 6,71 1,19 39 352 3,47 1,20 11,00 8 515 770 201 721 767 3,00 12 258,57 6,20 34,00
    Brazilië 2014 0,28 6,81 1,16 39 539 3,59 1,27 11,03 8 515 770 203 459 650 0,50 12 071,40 6,33 34,00
    Brazilië 2015 0,26 6,91 1,15 36 207 3,66 1,37 11,19 8 515 770 205 188 205 -3,55 8 783,22 9,03 34,00
    Brazilië 2016 0,22 6,94 1,16 35 977 3,55 1,29 11,24 8 515 770 206 859 578 -3,28 8 680,74 8,74 34,00
    Brazilië 2017 0,25 7,18 1,17 37 392 3,80 1,12 11,34 8 515 770 208 504 960 1,32 9 896,72 3,45 34,00
    Brazilië 2018 0,24 7,02 1,21 39 605 3,59 1,17 11,48 8 515 770 210 166 592 1,78 9 121,02 3,66 34,00
    Brazilië 2019 0,24 7,05 1,23 39 350 3,90 1,21 11,72 8 515 770 211 782 878 1,22 8 845,32 3,73 34,00
    Brazilië 2020 0,25 7,06 1,15 38 186 3,45 1,15 12,69 8 515 770 213 196 304 -3,28 6 923,70 3,21 34,00
    United Kingdom 2008 0,61 5,53 0,27 39 801 4,64 1,61 5,22 243 610 61806995 -0,23 47 396,12 3,52 28,00
    United Kingdom 2009 0,74 5,69 0,26 36 925 4,35 1,67 5,49 243 610 62276270 -4,61 38 744,13 1,96 28,00
    United Kingdom 2010 0,71 5,80 0,26 38 733 4,09 1,63 5,02 243 610 62766365 2,24 39 598,96 2,49 28,00
    United Kingdom 2011 0,71 5,80 0,26 42 623 3,90 1,65 4,65 243 610 63258810 1,15 42 109,64 3,86 26,00
    United Kingdom 2012 0,80 5,78 0,25 41 988 3,88 1,58 4,44 243 610 63700215 1,51 42 497,34 2,57 24,00
    United Kingdom 2013 0,82 5,50 0,25 42 318 3,98 1,62 4,37 243 610 64128273 1,79 43 426,30 2,29 23,00
    United Kingdom 2014 0,83 5,40 0,25 42 178 4,06 2,26 4,33 243 610 64602298 3,20 47 439,62 1,45 21,00
    United Kingdom 2015 0,88 5,32 0,25 37 876 4,20 2,27 4,12 243 610 65116219 2,22 44 964,39 0,37 20,00
    United Kingdom 2016 0,93 5,42 0,40 38 249 4,31 2,31 4,29 243 610 65611593 1,92 40 985,24 1,01 20,00
    United Kingdom 2017 0,96 5,50 0,39 40 138 4,39 2,32 4,18 243 610 66058859 2,66 40 572,12 2,56 19,00
    United Kingdom 2018 0,97 5,57 0,39 42 404 4,43 2,70 4,12 243 610 66460344 1,40 43 203,81 2,29 19,00
    United Kingdom 2019 1,00 5,90 0,38 42 073 4,48 2,67 4,37 243 610 66836327 1,64 42 662,54 1,74 19,00
    United Kingdom 2020 1,03 6,16 0,38 40 845 4,46 2,93 4,62 243 610 67081234 -10,36 40 217,01 0,99 19,00
    Italië 2008 0,90 5,21 0,30 39 022 4,87 1,16 8,97 302 073 58 826 731 -0,96 40 944,91 3,35 31,40
    Italië 2009 0,84 5,19 0,29 35 562 5,29 1,22 9,77 302 073 59 095 365 -5,28 37 226,76 0,77 31,40
    Italië 2010 0,85 5,10 0,30 37 681 5,33 1,22 9,71 302 073 59 277 417 1,71 36 035,64 1,53 31,40
    Italië 2011 0,86 5,07 0,30 41 448 5,30 1,20 9,72 302 073 59 379 449 0,71 38 649,64 2,78 31,40
    Italië 2012 0,78 4,98 0,30 41 456 5,32 1,26 9,81 302 073 59 539 717 -2,98 35 051,52 3,04 31,29
    Italië 2013 0,77 4,80 0,29 41 779 5,43 1,30 9,87 302 073 60 233 948 -1,84 35 560,08 1,22 31,29
    Italië 2014 0,73 4,73 0,29 42 146 5,24 1,34 9,86 302 073 60 789 140 0,00 35 565,72 0,24 31,29
    Italië 2015 0,75 4,68 0,29 38 457 5,03 1,34 9,80 302 073 60 730 582 0,78 30 242,39 0,04 31,29
    Italië 2016 0,75 4,67 0,29 38 144 5,15 1,37 9,73 302 073 60 627 498 1,29 30 960,73 -0,09 31,29
    Italië 2017 0,67 4,74 0,29 39 704 4,99 1,37 9,60 302 073 60 536 709 1,67 32 406,72 1,23 27,81
    Italië 2018 0,67 4,90 0,29 41 910 5,25 1,42 9,73 302 073 60 421 760 0,93 34 622,17 1,14 27,81
    Italië 2019 0,65 5,08 0,29 41 664 5,49 1,46 9,96 302 073 59 729 081 0,48 33 673,75 0,61 27,81
    Italië 2020 0,70 5,36 0,30 40 373 6,27 1,51 12,16 302 073 59 438 851 -8,97 31 922,92 -0,14 27,81

  • #2
    Why are you thinking xtpoisson?

    Comment


    • #3
      Originally posted by George Ford View Post
      Why are you thinking xtpoisson?
      Because the dependent variable is a count variable (the number of pharmaceutical companies in a country per 100,000 inhabitants) and there are fixed effects, I think.

      Comment


      • #4
        A per-capita variable is not a count. There are no count variables in that data, which is why I asked.

        What determines how many pharma companies are in a country?

        Comment


        • #5
          Ward:
          what is your supervisor's take about your statistical approach?
          Kind regards,
          Carlo
          (StataNow 18.5)

          Comment


          • #6
            Originally posted by George Ford View Post
            A per-capita variable is not a count. There are no count variables in that data, which is why I asked.

            What determines how many pharma companies are in a country?

            Thank you very much for pointing that out, it is indeed incorrect that I said that there is a count variable. It is then appropriate to use an xtreg regression since it concerns panel data? I then also tested for stationary using xtunitroot which shows that the panel data is stationary and therefore no further actions are required.

            I then also tested with the Hausman test whether it is an FE or RE model. The hausman test equates to a p-value of 0.4411 and the xttest0 (Breusch Pagan) equates to a p-value of 0.0000. Thinking logically myself, I would use an FE model as there are country factors that influence the number of pharmaceutical companies that are not included in the study. However, the Hausman test shows that an RE model is more suitable.

            Next I will test for multicollinearity. Please advise what I should do, how I approach it and which steps I have forgotten or should have done differently.

            Thank you in advance
            Ward Buurs

            Comment


            • #7
              Originally posted by Carlo Lazzaro View Post
              Ward:
              what is your supervisor's take about your statistical approach?
              I don't have another meeting with my supervisor until next week. I am currently trying to figure out as much as possible what to do and how to approach this. However, things are not going very well yet. I have currently turned the data into a panel data, tested for stationarity, performed the hausman test (although there are some issues around this, see previous post) and then tested for multicollinearity. Please advise what I should do next, how to approach this and whether I have done anything wrong. Met vriendelijke groet Ward Bruurs

              Comment


              • #8
                What are you trying to discover with your model?

                Comment


                • #9
                  Ward:
                  1) it is not clear what you mean by "turning your data into a panel". You have a panel dataset or not. Do you mean that you have -reshape-d your dataset in the -long- format?
                  2) it is not clear whether your panel dataset is N>T or the other way round;
                  3) if the cross-sectional dimension (N) is larger than the time-series (T) one, assuming that your regressand (Y) is continuous, you should go -xtreg-. Otherwise, you should consider -xtregar-;
                  4) if you are dealing with a short (N>T) panel dataset, unit root is usually not an issue;
                  5) you do not say anything about standard errors (default or not);
                  6) if "The hausman test equates to a p-value of 0.4411 and the xttest0 (Breusch Pagan) equates to a p-value of 0.0000" you should go -xtreg,re-;
                  7) see Chapter 23 in https://www.hup.harvard.edu/books/9780674175440 about multicolinearity (and why it rarely bites that hard).
                  Kind regards,
                  Carlo
                  (StataNow 18.5)

                  Comment


                  • #10
                    Originally posted by George Ford View Post
                    What are you trying to discover with your model?
                    I assume you are now referring to my research questions. These are as follows: -An increase in government subsidies in R&D within a country leads to a growth in the number of pharmaceutical companies -The number of suppliers, in this case the number of chemical companies, of intermediate goods needed in production has a positive influence on the number of pharmaceutical companies in a country -The number of highly educated people in a country has a positive influence on the number of pharmaceutical companies in a country -The number of academic institutions present in a country has a positive influence on the number of pharmaceutical companies present in that country -An increase in market potential in a country leads to a growth in the number of pharmaceutical companies -An increase in healthcare expenditure in a country leads to a growth in the number of pharmaceutical companies

                    Comment


                    • #11
                      Originally posted by Carlo Lazzaro View Post
                      Ward:
                      1) it is not clear what you mean by "turning your data into a panel". You have a panel dataset or not. Do you mean that you have -reshape-d your dataset in the -long- format?
                      2) it is not clear whether your panel dataset is N>T or the other way round;
                      3) if the cross-sectional dimension (N) is larger than the time-series (T) one, assuming that your regressand (Y) is continuous, you should go -xtreg-. Otherwise, you should consider -xtregar-;
                      4) if you are dealing with a short (N>T) panel dataset, unit root is usually not an issue;
                      5) you do not say anything about standard errors (default or not);
                      6) if "The hausman test equates to a p-value of 0.4411 and the xttest0 (Breusch Pagan) equates to a p-value of 0.0000" you should go -xtreg,re-;
                      7) see Chapter 23 in https://www.hup.harvard.edu/books/9780674175440 about multicolinearity (and why it rarely bites that hard).
                      Thank you very much for getting these points. I will discuss this with my supervisor and, if necessary, I will be happy to come back to this if anything is still unclear. Kind Regards Ward Bruurs

                      Comment


                      • #12
                        Tricky. There's a lot of potentially 2-way causality going on there. Chemical companies may follow Pharma companies (that happens, eg, in car manufacturing).

                        How often are drugs exported. In that case, your definition of market size may be different than that of the country itself (e.g., Puerto Rico used to produce a lot of drugs due to tax advantage, but no longer).

                        None of this suggests a DID approach, so you're going to be dealing with correlation at best.

                        I'd start with a regression of pharmacap on the other variables with fixed effects for country and year. Take the natural log of anything that's not a ratio/percentage, can have negative or zero values. See what you get and build from there.

                        Honestly, I don't think you're going to be satisfied with this topic in the end. There's a lot of history/accident in this (Germany, for example). A lot of imports from India and China. It's a difficult problem and you're data is not going to give you any causal results.



                        Comment

                        Working...
                        X