Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Calculating the same unknown using two coefficient regression results

    Hi all,

    I'm currently doing two separate multi-variable regression model, the regression models that I would like to estimate are:

    model 1: y=constant+(a/1-a)x1-(a/1-a)x2+error term
    and
    model 2: y=constant+(a/1-a-b)x1+(b/1-a-b)x2-(a+b/1-a-b)x3+error term

    I have succesfully got the regression results for the coefficient, and I would also like to calculate value for a using coefficients attained in regression model 1, and also values for a and b using coefficients attained in regression model 2, however I can't find any ways of calculating.

    Results for both models are:

    regress ln_yl2017 ln_Sk ln_n005,robust

    Linear regression Number of obs = 1,216
    F(2, 1213) = 73.67
    Prob > F = 0.0000
    R-squared = 0.1570
    Root MSE = .34053

    ------------------------------------------------------------------------------
    | Robust
    ln_yl2017 | Coefficient std. err. t P>|t| [95% conf. interval]
    -------------+----------------------------------------------------------------
    ln_Sk | .4220417 .0475839 8.87 0.000 .3286858 .5153975
    ln_n005 | -.7741964 .0801613 -9.66 0.000 -.9314667 -.6169262
    _cons | 23.44511 .227626 103.00 0.000 22.99852 23.89169

    regress ln_yl2017 ln_Sk ln_Sh ln_n005,robust

    Linear regression Number of obs = 1,216
    F(3, 1212) = 51.74
    Prob > F = 0.0000
    R-squared = 0.1577
    Root MSE = .34054

    ------------------------------------------------------------------------------
    | Robust
    ln_yl2017 | Coefficient std. err. t P>|t| [95% conf. interval]
    -------------+----------------------------------------------------------------
    ln_Sk | .4145648 .0465565 8.90 0.000 .3232246 .505905
    ln_Sh | .0546034 .0492135 1.11 0.267 -.0419497 .1511566
    ln_n005 | -.778283 .0814161 -9.56 0.000 -.9380152 -.6185509
    _cons | 23.36464 .2528492 92.41 0.000 22.86857 23.86071

    Thank you in advance to everyone who can help.
    Tiffany

  • #2
    what sort of theoretical model produced these empirical relationships?

    Comment


    • #3
      Originally posted by George Ford View Post
      what sort of theoretical model produced these empirical relationships?
      Hi George, I'm trying to replicate methodology following Mankiw, Romer and Weil (1992), their coefficient being estimated would give implication of a and b.

      Comment


      • #4
        Code:
        clear
        
        set obs 1000
        
        g x1 = rnormal()
        g x2 = rnormal()
        
        global a  0.75
        global b  0.20
        
        g e = rnormal()
        g y =  1 + ($a/(1-$a))*(x1 - x2) + e
        g y2 = 1 + ($a/(1-$a))*x1 - ($a/(1-$a))*x2  + e
        correl y y2
        
        g dx1x2 = x1 - x2
        
        reg y dx1x2
        di _b[dx1x2]/(1 + _b[dx1x2])
        
        reg y2 dx1x2
        di _b[dx1x2]/(1 + _b[dx1x2])
        
        nl (y = {b0} + x1*({a}/(1-{a})) - x2*({a}/(1-{a})))
        nl (y = {b0} + dx1x2*({a}/(1-{a})))

        Comment


        • #5
          Originally posted by George Ford View Post
          Code:
          clear
          
          set obs 1000
          
          g x1 = rnormal()
          g x2 = rnormal()
          
          global a 0.75
          global b 0.20
          
          g e = rnormal()
          g y = 1 + ($a/(1-$a))*(x1 - x2) + e
          g y2 = 1 + ($a/(1-$a))*x1 - ($a/(1-$a))*x2 + e
          correl y y2
          
          g dx1x2 = x1 - x2
          
          reg y dx1x2
          di _b[dx1x2]/(1 + _b[dx1x2])
          
          reg y2 dx1x2
          di _b[dx1x2]/(1 + _b[dx1x2])
          
          nl (y = {b0} + x1*({a}/(1-{a})) - x2*({a}/(1-{a})))
          nl (y = {b0} + dx1x2*({a}/(1-{a})))
          Hi George, definately gonna give it a try. Thank you very much!

          Comment


          • #6
            Code:
            g y3 = 1 + x1*$a/(1-$a-$b) + x3*($b/(1-$a-$b)) - x2*(($a+$b)/(1-$a-$b)) + e
            nl (y3 = {b0} + x1*{a}/(1-{a}-{b}) + x3*{b}/(1-{a}-{b}) - x2*({a}+{b})/(1-{a}-{b}))

            Comment

            Working...
            X