Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Different results in ppmlhdfe

    Dear all,
    I have a weekly panel dataset of crime categories per municipality. I am interested in exploring the relationship between the exposure to different covid related restrictions (red, orange, yellow) in the last 30 days and the crimes count per municipality. I am using a Poisson regression with the command ppmlhdfe from SSC in Stata 17 with municipality and week fixed effects.

    My data looks like this:
    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input float week double(Rapine Droga ms_red30 ms_orange30 ms_yellow30)
    3164 0 0                  0                  0                  0
    3165 1 0                  0                  0                  8
    3166 0 0                  0                  0                 15
    3167 0 0                  0                  0                 22
    3168 0 0                  0                  0 28.571428571428573
    3169 0 0                  0                  0                 30
    3170 0 0                  0                  0                 30
    3171 0 0 2.4444444444444446  .6666666666666666  26.88888888888889
    3172 0 0  7.571428571428571 3.4285714285714284                 19
    3173 0 0                 10  6.142857142857143 13.857142857142858
    3174 0 0                 10                 13                  7
    3175 0 0                  8 19.857142857142858  2.142857142857143
    3176 0 0                  4 23.142857142857142  2.857142857142857
    3177 0 0 .14285714285714285 22.142857142857142  7.714285714285714
    3178 0 1                  0                 16                 14
    3179 0 0                  0                  9                 21
    3180 0 0                  0  2.142857142857143 27.857142857142858
    3181 0 0                  0  .8571428571428571 29.142857142857142
    3182 0 0  .8571428571428571  6.142857142857143                 23
    3183 0 1                  7                  7                 16
    end
    format %tw week
    label var Rapine "Robberies" 
    label var Droga "Drugs" 
    label var ms_red30 "# of days under red zone in the last 30 days" 
    label var ms_orange30 "# of days under orange zone in the last 30 days" 
    label var ms_yellow30 "# of days under yellow zone in the last 30 days"
    I don't understand why, when studying robberies, if I include week in the abs() option ms_yellow is drop due to collinearity while if i include week as a factor variable ms_yellow doesn't drop and the coefficients are different (last week drops).
    If i implement the same exercise for "drugs" the coefficients are the same in both specifications :

    Code:
    . ppmlhdfe Rapine ms_red30 ms_orange30 ms_yellow30 $controls, abs(city week) vce(cluster city_week)
    (dropped 162492 observations that are either singletons or separated by a fixed effect)
    (ReLU method dropped 4 separated observations in 1 iterations)
    note: 1 variable omitted because of collinearity: ms_yellow30
    Iteration 1:   deviance = 5.7489e+03  eps = .         iters = 4    tol = 1.0e-04  min(eta) =  -3.44  P   
    Iteration 2:   deviance = 4.8428e+03  eps = 1.87e-01  iters = 3    tol = 1.0e-04  min(eta) =  -4.04      
    Iteration 3:   deviance = 4.7653e+03  eps = 1.63e-02  iters = 3    tol = 1.0e-04  min(eta) =  -4.35      
    Iteration 4:   deviance = 4.7640e+03  eps = 2.89e-04  iters = 3    tol = 1.0e-04  min(eta) =  -4.41      
    Iteration 5:   deviance = 4.7640e+03  eps = 2.44e-07  iters = 2    tol = 1.0e-04  min(eta) =  -4.41      
    Iteration 6:   deviance = 4.7640e+03  eps = 5.11e-13  iters = 2    tol = 1.0e-05  min(eta) =  -4.41   S  
    Iteration 7:   deviance = 4.7640e+03  eps = 1.82e-16  iters = 2    tol = 1.0e-08  min(eta) =  -4.41   S O
    ------------------------------------------------------------------------------------------------------------
    (legend: p: exact partial-out   s: exact solver   h: step-halving   o: epsilon below tolerance)
    Converged in 7 iterations and 19 HDFE sub-iterations (tol = 1.0e-08)
    
    HDFE PPML regression                              No. of obs      =     16,410
    Absorbing 2 HDFE groups                           Residual df     =     16,003
    Statistics robust to heteroskedasticity           Wald chi2(5)    =      17.64
    Deviance             =  4763.964214               Prob > chi2     =     0.0034
    Log pseudolikelihood = -3514.408655               Pseudo R2       =     0.3932
    
    Number of clusters (city_week)=    16,410
                             (Std. err. adjusted for 16,410 clusters in city_week)
    ------------------------------------------------------------------------------
                 |               Robust
          Rapine | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
        ms_red30 |  -.0226975   .0092091    -2.46   0.014     -.040747    -.004648
     ms_orange30 |   .0125123   .0081232     1.54   0.123    -.0034088    .0284335
     ms_yellow30 |          0  (omitted)
        pop_city |   1.14e-07   .0000194     0.01   0.995     -.000038    .0000382
       male_1539 |  -.0000613   .0000736    -0.83   0.405    -.0002055    .0000829
         pop_imm |  -.0000179   .0000348    -0.52   0.606    -.0000861    .0000502
           _cons |   5.288924   8.805351     0.60   0.548    -11.96925    22.54709
    ------------------------------------------------------------------------------
    
    Absorbed degrees of freedom:
    -----------------------------------------------------+
     Absorbed FE | Categories  - Redundant  = Num. Coefs |
    -------------+---------------------------------------|
            city |       357           0         357     |
            week |        46           1          45     |
    -----------------------------------------------------+
    
    . ppmlhdfe Rapine ms_red30 ms_orange30 ms_yellow30 $controls, abs(city week) vce(cluster city_week) nolog
    (dropped 162492 observations that are either singletons or separated by a fixed effect)
    (ReLU method dropped 4 separated observations in 1 iterations)
    note: 1 variable omitted because of collinearity: ms_yellow30
    Converged in 7 iterations and 19 HDFE sub-iterations (tol = 1.0e-08)
    
    HDFE PPML regression                              No. of obs      =     16,410
    Absorbing 2 HDFE groups                           Residual df     =     16,003
    Statistics robust to heteroskedasticity           Wald chi2(5)    =      17.64
    Deviance             =  4763.964214               Prob > chi2     =     0.0034
    Log pseudolikelihood = -3514.408655               Pseudo R2       =     0.3932
    
    Number of clusters (city_week)=    16,410
                             (Std. err. adjusted for 16,410 clusters in city_week)
    ------------------------------------------------------------------------------
                 |               Robust
          Rapine | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
        ms_red30 |  -.0226975   .0092091    -2.46   0.014     -.040747    -.004648
     ms_orange30 |   .0125123   .0081232     1.54   0.123    -.0034088    .0284335
     ms_yellow30 |          0  (omitted)
        pop_city |   1.14e-07   .0000194     0.01   0.995     -.000038    .0000382
       male_1539 |  -.0000613   .0000736    -0.83   0.405    -.0002055    .0000829
         pop_imm |  -.0000179   .0000348    -0.52   0.606    -.0000861    .0000502
           _cons |   5.288924   8.805351     0.60   0.548    -11.96925    22.54709
    ------------------------------------------------------------------------------
    
    Absorbed degrees of freedom:
    -----------------------------------------------------+
     Absorbed FE | Categories  - Redundant  = Num. Coefs |
    -------------+---------------------------------------|
            city |       357           0         357     |
            week |        46           1          45     |
    -----------------------------------------------------+
    
    . ppmlhdfe Rapine ms_red30 ms_orange30 ms_yellow30 $controls, abs(city week) vce(cluster city_week)
    (dropped 162492 observations that are either singletons or separated by a fixed effect)
    (ReLU method dropped 4 separated observations in 1 iterations)
    note: 1 variable omitted because of collinearity: ms_yellow30
    Iteration 1:   deviance = 5.7489e+03  eps = .         iters = 4    tol = 1.0e-04  min(eta) =  -3.44  P   
    Iteration 2:   deviance = 4.8428e+03  eps = 1.87e-01  iters = 3    tol = 1.0e-04  min(eta) =  -4.04      
    Iteration 3:   deviance = 4.7653e+03  eps = 1.63e-02  iters = 3    tol = 1.0e-04  min(eta) =  -4.35      
    Iteration 4:   deviance = 4.7640e+03  eps = 2.89e-04  iters = 3    tol = 1.0e-04  min(eta) =  -4.41      
    Iteration 5:   deviance = 4.7640e+03  eps = 2.44e-07  iters = 2    tol = 1.0e-04  min(eta) =  -4.41      
    Iteration 6:   deviance = 4.7640e+03  eps = 5.11e-13  iters = 2    tol = 1.0e-05  min(eta) =  -4.41   S  
    Iteration 7:   deviance = 4.7640e+03  eps = 1.82e-16  iters = 2    tol = 1.0e-08  min(eta) =  -4.41   S O
    ------------------------------------------------------------------------------------------------------------
    (legend: p: exact partial-out   s: exact solver   h: step-halving   o: epsilon below tolerance)
    Converged in 7 iterations and 19 HDFE sub-iterations (tol = 1.0e-08)
    
    HDFE PPML regression                              No. of obs      =     16,410
    Absorbing 2 HDFE groups                           Residual df     =     16,003
    Statistics robust to heteroskedasticity           Wald chi2(5)    =      17.64
    Deviance             =  4763.964214               Prob > chi2     =     0.0034
    Log pseudolikelihood = -3514.408655               Pseudo R2       =     0.3932
    
    Number of clusters (city_week)=    16,410
                             (Std. err. adjusted for 16,410 clusters in city_week)
    ------------------------------------------------------------------------------
                 |               Robust
          Rapine | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
        ms_red30 |  -.0226975   .0092091    -2.46   0.014     -.040747    -.004648
     ms_orange30 |   .0125123   .0081232     1.54   0.123    -.0034088    .0284335
     ms_yellow30 |          0  (omitted)
        pop_city |   1.14e-07   .0000194     0.01   0.995     -.000038    .0000382
       male_1539 |  -.0000613   .0000736    -0.83   0.405    -.0002055    .0000829
         pop_imm |  -.0000179   .0000348    -0.52   0.606    -.0000861    .0000502
           _cons |   5.288924   8.805351     0.60   0.548    -11.96925    22.54709
    ------------------------------------------------------------------------------
    
    Absorbed degrees of freedom:
    -----------------------------------------------------+
     Absorbed FE | Categories  - Redundant  = Num. Coefs |
    -------------+---------------------------------------|
            city |       357           0         357     |
            week |        46           1          45     |
    -----------------------------------------------------+
    
    . ppmlhdfe Rapine ms_red30 ms_orange30 ms_yellow30 i.week $controls, abs(city) vce(cluster city_week)
    (dropped 162492 observations that are either singletons or separated by a fixed effect)
    (simplex method dropped 4 separated observations)
    note: 1 variable omitted because of collinearity: 3183bn.week
    Iteration 1:   deviance = 5.7489e+03  eps = .         iters = 1    tol = 1.0e-04  min(eta) =  -3.44  P   
    Iteration 2:   deviance = 4.8428e+03  eps = 1.87e-01  iters = 1    tol = 1.0e-04  min(eta) =  -4.04      
    Iteration 3:   deviance = 4.7653e+03  eps = 1.63e-02  iters = 1    tol = 1.0e-04  min(eta) =  -4.35      
    Iteration 4:   deviance = 4.7640e+03  eps = 2.89e-04  iters = 1    tol = 1.0e-04  min(eta) =  -4.41      
    Iteration 5:   deviance = 4.7640e+03  eps = 2.44e-07  iters = 1    tol = 1.0e-04  min(eta) =  -4.41      
    Iteration 6:   deviance = 4.7640e+03  eps = 5.11e-13  iters = 1    tol = 1.0e-05  min(eta) =  -4.41   S O
    ------------------------------------------------------------------------------------------------------------
    (legend: p: exact partial-out   s: exact solver   h: step-halving   o: epsilon below tolerance)
    Converged in 6 iterations and 6 HDFE sub-iterations (tol = 1.0e-08)
    
    HDFE PPML regression                              No. of obs      =     16,410
    Absorbing 1 HDFE group                            Residual df     =     16,003
    Statistics robust to heteroskedasticity           Wald chi2(50)   =     137.08
    Deviance             =  4763.964214               Prob > chi2     =     0.0000
    Log pseudolikelihood = -3514.408655               Pseudo R2       =     0.3932
    
    Number of clusters (city_week)=    16,410
                             (Std. err. adjusted for 16,410 clusters in city_week)
    ------------------------------------------------------------------------------
                 |               Robust
          Rapine | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
        ms_red30 |   .0298577   .0146061     2.04   0.041     .0012302    .0584851
     ms_orange30 |   .0650675   .0124338     5.23   0.000     .0406978    .0894372
     ms_yellow30 |   .0525552   .0126576     4.15   0.000     .0277467    .0773636
                 |
            week |
           3139  |   .8754687   .3511201     2.49   0.013     .1872861    1.563651
           3140  |   .9932518   .3632425     2.73   0.006     .2813095    1.705194
           3141  |   .7884574   .3749755     2.10   0.035      .053519    1.523396
           3142  |   1.064711   .3661866     2.91   0.004     .3469982    1.782423
           3143  |   1.410987   .3452933     4.09   0.000     .7342246    2.087749
           3144  |   .8754687   .3685572     2.38   0.018       .15311    1.597828
           3145  |   .7884574   .3900979     2.02   0.043     .0238794    1.553035
           3146  |   .9932518   .3725372     2.67   0.008     .2630922    1.723411
           3147  |   .8754687   .3752277     2.33   0.020     .1400359    1.610902
           3148  |   1.223775   .3539036     3.46   0.001     .5301371    1.917414
           3149  |   1.504077   .3373051     4.46   0.000     .8429716    2.165183
           3150  |   .9162907   .3528733     2.60   0.009     .2246719     1.60791
           3151  |   1.131402   .3829937     2.95   0.003     .3807483    1.882056
           3152  |   1.308333   .3583386     3.65   0.000     .6060021    2.010664
           3153  |   .9932518   .3676894     2.70   0.007     .2725937     1.71391
           3154  |   .9555114   .4048922     2.36   0.018     .1619374    1.749086
           3155  |   1.064711   .3504744     3.04   0.002     .3777936    1.751628
           3156  |   1.280934   .3412644     3.75   0.000     .6120679      1.9498
           3157  |   1.458615   .3396505     4.29   0.000     .7929122    2.124318
           3158  |   1.223775    .410377     2.98   0.003     .4194513      2.0281
           3159  |   1.526056   .3439907     4.44   0.000     .8518469    2.200266
           3160  |   1.193922   .3567544     3.35   0.001     .4946967    1.893148
           3161  |   .9555114   .4006547     2.38   0.017     .1702427     1.74078
           3162  |   1.193922    .360692     3.31   0.001     .4869791    1.900866
           3163  |   1.360977   .3413414     3.99   0.000     .6919596    2.029993
           3164  |   1.163151   .3502992     3.32   0.001     .4765769    1.849725
           3165  |   .9285007   .2775702     3.35   0.001     .3844732    1.472528
           3166  |  -.1364457   .3175993    -0.43   0.667    -.7589289    .4860376
           3167  |   .0875085   .2584912     0.34   0.735    -.4191249     .594142
           3168  |  -.3776926   .2591558    -1.46   0.145    -.8856285    .1302434
           3169  |  -.6055099   .2392328    -2.53   0.011    -1.074398   -.1366222
           3170  |  -.6416722   .3143764    -2.04   0.041    -1.257839   -.0255058
           3171  |  -.4615336   .2528655    -1.83   0.068    -.9571409    .0340738
           3172  |  -.0268751   .3367053    -0.08   0.936    -.6868054    .6330551
           3173  |    .075262   .2417859     0.31   0.756    -.3986296    .5491536
           3174  |  -.0439122   .2387102    -0.18   0.854    -.5117756    .4239512
           3175  |   .0523969   .2549484     0.21   0.837    -.4472928    .5520867
           3176  |  -.2381298   .2435634    -0.98   0.328    -.7155052    .2392456
           3177  |  -.0684369   .2253688    -0.30   0.761    -.5101516    .3732778
           3178  |  -.0187477   .2187683    -0.09   0.932    -.4475257    .4100303
           3179  |  -.0529918    .238604    -0.22   0.824     -.520647    .4146634
           3180  |  -.0531046   .2305366    -0.23   0.818    -.5049482    .3987389
           3181  |  -.6612678   .2461883    -2.69   0.007    -1.143788   -.1787476
           3182  |  -.0768463   .2372416    -0.32   0.746    -.5418313    .3881386
           3183  |          0  (omitted)
                 |
        pop_city |   1.14e-07   .0000194     0.01   0.995     -.000038    .0000382
       male_1539 |  -.0000613   .0000736    -0.83   0.405    -.0002055    .0000829
         pop_imm |  -.0000179   .0000348    -0.52   0.606    -.0000861    .0000502
           _cons |   4.022255   8.806262     0.46   0.648     -13.2377    21.28221
    ------------------------------------------------------------------------------
    
    Absorbed degrees of freedom:
    -----------------------------------------------------+
     Absorbed FE | Categories  - Redundant  = Num. Coefs |
    -------------+---------------------------------------|
            city |       357           0         357     |
    -----------------------------------------------------+
    
    . ppmlhdfe Droga ms_red30 ms_orange30 ms_yellow30 $controls, abs(city week) vce(cluster city_week)
    (dropped 141152 observations that are either singletons or separated by a fixed effect)
    Iteration 1:   deviance = 1.4431e+04  eps = .         iters = 4    tol = 1.0e-04  min(eta) =  -3.47  P   
    Iteration 2:   deviance = 1.2203e+04  eps = 1.83e-01  iters = 3    tol = 1.0e-04  min(eta) =  -4.12      
    Iteration 3:   deviance = 1.1996e+04  eps = 1.72e-02  iters = 2    tol = 1.0e-04  min(eta) =  -4.45      
    Iteration 4:   deviance = 1.1981e+04  eps = 1.28e-03  iters = 2    tol = 1.0e-04  min(eta) =  -4.52      
    Iteration 5:   deviance = 1.1980e+04  eps = 9.72e-05  iters = 2    tol = 1.0e-04  min(eta) =  -4.52      
    Iteration 6:   deviance = 1.1980e+04  eps = 1.23e-06  iters = 2    tol = 1.0e-05  min(eta) =  -4.52      
    Iteration 7:   deviance = 1.1980e+04  eps = 2.56e-10  iters = 2    tol = 1.0e-06  min(eta) =  -4.52   S  
    Iteration 8:   deviance = 1.1980e+04  eps = 1.94e-16  iters = 2    tol = 1.0e-07  min(eta) =  -4.52   S  
    Iteration 9:   deviance = 1.1980e+04  eps = 0.00e+00  iters = 1    tol = 1.0e-09  min(eta) =  -4.52   S O
    ------------------------------------------------------------------------------------------------------------
    (legend: p: exact partial-out   s: exact solver   h: step-halving   o: epsilon below tolerance)
    Converged in 9 iterations and 20 HDFE sub-iterations (tol = 1.0e-08)
    
    HDFE PPML regression                              No. of obs      =     37,754
    Absorbing 2 HDFE groups                           Residual df     =     36,882
    Statistics robust to heteroskedasticity           Wald chi2(6)    =       6.78
    Deviance             =  11979.78293               Prob > chi2     =     0.3418
    Log pseudolikelihood = -8965.445258               Pseudo R2       =     0.4611
    
    Number of clusters (city_week)=    37,754
                             (Std. err. adjusted for 37,754 clusters in city_week)
    ------------------------------------------------------------------------------
                 |               Robust
           Droga | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
        ms_red30 |   .0126934   .0271877     0.47   0.641    -.0405936    .0659803
     ms_orange30 |   .0171888   .0270549     0.64   0.525    -.0358378    .0702155
     ms_yellow30 |   .0134935   .0269487     0.50   0.617    -.0393249    .0663119
        pop_city |  -.0000197   .0000122    -1.61   0.106    -.0000437    4.22e-06
       male_1539 |   .0000577    .000049     1.18   0.240    -.0000385    .0001538
         pop_imm |  -.0000421    .000022    -1.92   0.055    -.0000852    9.66e-07
           _cons |   7.023082   4.023459     1.75   0.081    -.8627532    14.90892
    ------------------------------------------------------------------------------
    
    Absorbed degrees of freedom:
    -----------------------------------------------------+
     Absorbed FE | Categories  - Redundant  = Num. Coefs |
    -------------+---------------------------------------|
            city |       821           0         821     |
            week |        46           1          45     |
    -----------------------------------------------------+
    
    . ppmlhdfe Droga ms_red30 ms_orange30 ms_yellow30 i.week $controls, abs(city) vce(cluster city_week)
    (dropped 141152 observations that are either singletons or separated by a fixed effect)
    Iteration 1:   deviance = 1.4431e+04  eps = .         iters = 1    tol = 1.0e-04  min(eta) =  -3.47  P   
    Iteration 2:   deviance = 1.2203e+04  eps = 1.83e-01  iters = 1    tol = 1.0e-04  min(eta) =  -4.12      
    Iteration 3:   deviance = 1.1996e+04  eps = 1.72e-02  iters = 1    tol = 1.0e-04  min(eta) =  -4.45      
    Iteration 4:   deviance = 1.1981e+04  eps = 1.28e-03  iters = 1    tol = 1.0e-04  min(eta) =  -4.52      
    Iteration 5:   deviance = 1.1980e+04  eps = 9.72e-05  iters = 1    tol = 1.0e-04  min(eta) =  -4.52      
    Iteration 6:   deviance = 1.1980e+04  eps = 1.23e-06  iters = 1    tol = 1.0e-05  min(eta) =  -4.52      
    Iteration 7:   deviance = 1.1980e+04  eps = 2.56e-10  iters = 1    tol = 1.0e-06  min(eta) =  -4.52   S O
    ------------------------------------------------------------------------------------------------------------
    (legend: p: exact partial-out   s: exact solver   h: step-halving   o: epsilon below tolerance)
    Converged in 7 iterations and 7 HDFE sub-iterations (tol = 1.0e-08)
    
    HDFE PPML regression                              No. of obs      =     37,754
    Absorbing 1 HDFE group                            Residual df     =     36,882
    Statistics robust to heteroskedasticity           Wald chi2(51)   =     309.71
    Deviance             =  11979.78293               Prob > chi2     =     0.0000
    Log pseudolikelihood = -8965.445258               Pseudo R2       =     0.4611
    
    Number of clusters (city_week)=    37,754
                             (Std. err. adjusted for 37,754 clusters in city_week)
    ------------------------------------------------------------------------------
                 |               Robust
           Droga | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
        ms_red30 |   .0126934   .0271877     0.47   0.641    -.0405936    .0659803
     ms_orange30 |   .0171888   .0270549     0.64   0.525    -.0358378    .0702155
     ms_yellow30 |   .0134935   .0269486     0.50   0.617    -.0393249    .0663119
                 |
            week |
           3139  |  -.0870114   .1592926    -0.55   0.585    -.3992192    .2251964
           3140  |   .0507723   .1539785     0.33   0.742      -.25102    .3525646
           3141  |  -.2205428   .1619966    -1.36   0.173    -.5380502    .0969646
           3142  |   .1805839   .1580223     1.14   0.253    -.1291342     .490302
           3143  |   .0703808   .1665922     0.42   0.673     -.256134    .3968956
           3144  |  -.0984401   .1520385    -0.65   0.517    -.3964301    .1995499
           3145  |  -.0645385   .1647794    -0.39   0.695    -.3875003    .2584232
           3146  |   .0990909   .1571578     0.63   0.528    -.2089328    .4071146
           3147  |   .0606246   .1702683     0.36   0.722    -.2730951    .3943443
           3148  |   .0103628   .1646738     0.06   0.950    -.3123918    .3331174
           3149  |  -.0104713   .2293761    -0.05   0.964    -.4600401    .4390975
           3150  |  -.3302417   .1803308    -1.83   0.067    -.6836836    .0232002
           3151  |  -.2205428   .1603323    -1.38   0.169    -.5347883    .0937027
           3152  |  -1.067841   .2244257    -4.76   0.000    -1.507707   -.6279743
           3153  |  -.4700036   .2033763    -2.31   0.021    -.8686139   -.0713933
           3154  |  -.3302417    .219605    -1.50   0.133    -.7606596    .1001762
           3155  |  -.0757118   .1726292    -0.44   0.661    -.4140588    .2626351
           3156  |  -2.74e-15   .1513658    -0.00   1.000    -.2966715    .2966715
           3157  |  -.1216969   .1613267    -0.75   0.451    -.4378915    .1944976
           3158  |  -.1823216   .1718081    -1.06   0.289    -.5190593    .1544162
           3159  |   .1978257   .1508679     1.31   0.190    -.0978699    .4935214
           3160  |  -.0210534   .1452417    -0.14   0.885     -.305722    .2636151
           3161  |  -.0870114   .1800608    -0.48   0.629    -.4399241    .2659014
           3162  |  -.2468601   .1580414    -1.56   0.118    -.5566156    .0628954
           3163  |  -.1216969   .1630139    -0.75   0.455    -.4411984    .1978045
           3164  |  -.0317487   .1599006    -0.20   0.843    -.3451482    .2816508
           3165  |  -.1451813   .2650406    -0.55   0.584    -.6646514    .3742887
           3166  |  -.3499935   .4323297    -0.81   0.418    -1.197344    .4973572
           3167  |  -.2394586   .6111949    -0.39   0.695    -1.437379    .9584615
           3168  |  -.4837699   .7857264    -0.62   0.538    -2.023765    1.056226
           3169  |  -.3742401   .8218253    -0.46   0.649    -1.984988    1.236508
           3170  |   -.528413   .8224956    -0.64   0.521    -2.140475    1.083649
           3171  |  -.8869515   .8294068    -1.07   0.285    -2.512559    .7386559
           3172  |  -1.037717   .8320618    -1.25   0.212    -2.668528    .5930944
           3173  |  -.2553729   .8244893    -0.31   0.757    -1.871342    1.360596
           3174  |   .0733849   .8195733     0.09   0.929    -1.532949    1.679719
           3175  |  -.2615349   .8208882    -0.32   0.750    -1.870446    1.347376
           3176  |  -.1447715   .8194019    -0.18   0.860     -1.75077    1.461227
           3177  |   .2621761   .8200977     0.32   0.749    -1.345186    1.869538
           3178  |   .1601439   .8199992     0.20   0.845    -1.447025    1.767313
           3179  |  -.1488362   .8213048    -0.18   0.856    -1.758564    1.460892
           3180  |   .0502398   .8201311     0.06   0.951    -1.557188    1.657667
           3181  |  -.1165959   .8209037    -0.14   0.887    -1.725538    1.492346
           3182  |  -.0481659   .8199865    -0.06   0.953     -1.65531    1.558978
           3183  |     .04592   .8025869     0.06   0.954    -1.527121    1.618962
                 |
        pop_city |  -.0000197   .0000122    -1.61   0.106    -.0000437    4.22e-06
       male_1539 |   .0000577    .000049     1.18   0.240    -.0000385    .0001538
         pop_imm |  -.0000421    .000022    -1.92   0.055    -.0000852    9.66e-07
           _cons |   7.127697   4.005883     1.78   0.075    -.7236883    14.97908
    ------------------------------------------------------------------------------
    
    Absorbed degrees of freedom:
    -----------------------------------------------------+
     Absorbed FE | Categories  - Redundant  = Num. Coefs |
    -------------+---------------------------------------|
            city |       821           0         821     |
    Hopefully someone can help me.

    Andrea

  • #2
    Dear Andrea Montalbano,

    The results are the same, but ms_yellow30 is collinear with one of the fixed effects, so you can drop one or the other, which is what is happening.

    Best wishes,

    Joao

    Comment


    • #3
      Thanks a lot, now i see.

      Comment

      Working...
      X