Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Putdocx does not report standard error in output tables

    Hi,

    I am trying to export my logit results into Word, however, putdocx only exports coefficients and significance levels. How do I also include standard error under coefficients?

    Code:
    
    . ssc install dataex
    checking dataex consistency and verifying not already installed...
    all files already exist and are up to date.
    
    . do "C:\Users\sofiy\AppData\Local\Temp\STD33a4_000000.tmp"
    
    . logit W1ExcludeYP i.W1ethgrpYP1 i.in_poverty i.W1hiqualgMP i.W1SOCMajorMP W1parmonMP W1dispar c.schooldis i.W1englangYP i.W1truantYP substance_use delinquency if mysample [pweight = Designweight], v
    > ce (cluster SampPSU) // Model 2
    
    Iteration 0:   log pseudolikelihood = -2753.1739  
    Iteration 1:   log pseudolikelihood = -2525.1759  
    Iteration 2:   log pseudolikelihood = -2327.3282  
    Iteration 3:   log pseudolikelihood = -2324.2697  
    Iteration 4:   log pseudolikelihood = -2324.2664  
    Iteration 5:   log pseudolikelihood = -2324.2664  
    
    Logistic regression                             Number of obs     =      7,352
                                                    Wald chi2(12)     =     728.70
                                                    Prob > chi2       =     0.0000
    Log pseudolikelihood = -2324.2664               Pseudo R2         =     0.1558
    
                                                  (Std. Err. adjusted for 637 clusters in SampPSU)
    ----------------------------------------------------------------------------------------------
                                 |               Robust
                     W1ExcludeYP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------------------+----------------------------------------------------------------
                     W1ethgrpYP1 |
                              2  |   .4389618   .2122285     2.07   0.039     .0230015    .8549221
                              3  |   1.039686   .2147347     4.84   0.000     .6188138    1.460558
                                 |
                    1.in_poverty |   .3435475   .1057649     3.25   0.001     .1362522    .5508428
                                 |
                     W1hiqualgMP |
                  Low education  |   .7137303   .0984105     7.25   0.000     .5208493    .9066112
                                 |
                    W1SOCMajorMP |
        Low occupational status  |   .3495525   .1262489     2.77   0.006     .1021093    .5969957
                      W1parmonMP |   .1356613   .0679428     2.00   0.046     .0024958    .2688268
                        W1dispar |  -.2167022   .0968772    -2.24   0.025     -.406578   -.0268263
                       schooldis |   .2782936   .0667631     4.17   0.000     .1474403    .4091468
                                 |
                     W1englangYP |
    English as Foreign Language  |  -1.647494    1.09933    -1.50   0.134    -3.802142    .5071542
                                 |
                      W1truantYP |
                        Truancy  |   .9379643   .1173101     8.00   0.000     .7080407    1.167888
                   substance_use |   .4282403   .0922831     4.64   0.000     .2473688    .6091118
                     delinquency |   .3303547   .0698884     4.73   0.000     .1933758    .4673335
                           _cons |  -4.477077   .3851041   -11.63   0.000    -5.231868   -3.722287
    ----------------------------------------------------------------------------------------------
    
    . margins, dydx (W1ethgrpYP1 in_poverty W1hiqualgMP W1SOCMajorMP W1parmonMP W1dispar schooldis W1englangYP W1truantYP substance_use delinquency)
    
    Average marginal effects                        Number of obs     =      7,352
    Model VCE    : Robust
    
    Expression   : Pr(W1ExcludeYP), predict()
    dy/dx w.r.t. : 2.W1ethgrpYP1 3.W1ethgrpYP1 1.in_poverty 2.W1hiqualgMP 2.W1SOCMajorMP W1parmonMP W1dispar schooldis 1.W1englangYP 1.W1truantYP substance_use delinquency
    
    ----------------------------------------------------------------------------------------------
                                 |            Delta-method
                                 |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------------------+----------------------------------------------------------------
                     W1ethgrpYP1 |
                              2  |   .0357636   .0195382     1.83   0.067    -.0025305    .0740577
                              3  |   .1024289   .0272256     3.76   0.000     .0490677    .1557902
                                 |
                    1.in_poverty |   .0261442   .0085119     3.07   0.002     .0094611    .0428272
                                 |
                     W1hiqualgMP |
                  Low education  |   .0568304   .0087276     6.51   0.000     .0397246    .0739362
                                 |
                    W1SOCMajorMP |
        Low occupational status  |   .0271704   .0106389     2.55   0.011     .0063186    .0480222
                      W1parmonMP |   .0097422   .0048559     2.01   0.045     .0002249    .0192595
                        W1dispar |   -.015562   .0070022    -2.22   0.026    -.0292861   -.0018378
                       schooldis |    .019985   .0048564     4.12   0.000     .0104666    .0295035
                                 |
                     W1englangYP |
    English as Foreign Language  |  -.0693678   .0228426    -3.04   0.002    -.1141386   -.0245971
                                 |
                      W1truantYP |
                        Truancy  |    .083903   .0127278     6.59   0.000     .0589569    .1088491
                   substance_use |   .0307531   .0066712     4.61   0.000     .0176778    .0438285
                     delinquency |   .0237237   .0050327     4.71   0.000     .0138598    .0335875
    ----------------------------------------------------------------------------------------------
    Note: dy/dx for factor levels is the discrete change from the base level.
    
    . estimates store model2
    
    .
    end of do-file
    
    . do "C:\Users\sofiy\AppData\Local\Temp\STD33a4_000000.tmp"
    
    . logit W1ExcludeYP i.W1ethgrpYP1 i.in_poverty i.W1hiqualgMP i.W1SOCMajorMP W1parmonMP W1dispar c.schooldis i.W1englangYP i.IndSchool i.urbind i.gor i.W1truantYP substance_use delinquency if mysample
    > [pweight = Designweight], vce (cluster SampPSU) // Model 2
    
    Iteration 0:   log pseudolikelihood = -2753.1739  
    Iteration 1:   log pseudolikelihood = -2522.6522  
    Iteration 2:   log pseudolikelihood = -2323.8644  
    Iteration 3:   log pseudolikelihood = -2320.7121  
    Iteration 4:   log pseudolikelihood = -2320.7083  
    Iteration 5:   log pseudolikelihood = -2320.7083  
    
    Logistic regression                             Number of obs     =      7,352
                                                    Wald chi2(15)     =     766.91
                                                    Prob > chi2       =     0.0000
    Log pseudolikelihood = -2320.7083               Pseudo R2         =     0.1571
    
                                                  (Std. Err. adjusted for 637 clusters in SampPSU)
    ----------------------------------------------------------------------------------------------
                                 |               Robust
                     W1ExcludeYP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------------------+----------------------------------------------------------------
                     W1ethgrpYP1 |
                              2  |   .4097703    .212487     1.93   0.054    -.0066964    .8262371
                              3  |   .9929835   .2197574     4.52   0.000     .5622668      1.4237
                                 |
                    1.in_poverty |   .3287288   .1049728     3.13   0.002     .1229859    .5344718
                                 |
                     W1hiqualgMP |
                  Low education  |   .6958219   .1006095     6.92   0.000      .498631    .8930129
                                 |
                    W1SOCMajorMP |
        Low occupational status  |   .3384298   .1268992     2.67   0.008     .0897118    .5871477
                      W1parmonMP |   .1351199   .0676346     2.00   0.046     .0025586    .2676813
                        W1dispar |  -.2210846    .096875    -2.28   0.022    -.4109562    -.031213
                       schooldis |   .2744052    .066923     4.10   0.000     .1432385    .4055719
                                 |
                     W1englangYP |
    English as Foreign Language  |   -1.62687   1.101177    -1.48   0.140    -3.785137    .5313964
                                 |
                       IndSchool |
                  Public school  |   .1766755   .5116462     0.35   0.730    -.8261325    1.179484
                                 |
                          urbind |
                          Urban  |   .2540162   .1263526     2.01   0.044     .0063697    .5016627
                                 |
                             gor |
               Northern England  |   .0373869   .1082035     0.35   0.730    -.1746881     .249462
                                 |
                      W1truantYP |
                        Truancy  |   .9279133   .1169936     7.93   0.000       .69861    1.157217
                   substance_use |   .4377186   .0911451     4.80   0.000     .2590775    .6163597
                     delinquency |   .3244598   .0696483     4.66   0.000     .1879517    .4609679
                           _cons |  -4.812779   .6214717    -7.74   0.000    -6.030841   -3.594716
    ----------------------------------------------------------------------------------------------
    
    . margins, dydx (W1ethgrpYP1 in_poverty W1hiqualgMP W1SOCMajorMP W1parmonMP W1dispar schooldis W1englangYP IndSchool urbind gor W1truantYP substance_use delinquency)
    
    Average marginal effects                        Number of obs     =      7,352
    Model VCE    : Robust
    
    Expression   : Pr(W1ExcludeYP), predict()
    dy/dx w.r.t. : 2.W1ethgrpYP1 3.W1ethgrpYP1 1.in_poverty 2.W1hiqualgMP 2.W1SOCMajorMP W1parmonMP W1dispar schooldis 1.W1englangYP 1.IndSchool 2.urbind 2.gor 1.W1truantYP substance_use delinquency
    
    ----------------------------------------------------------------------------------------------
                                 |            Delta-method
                                 |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------------------+----------------------------------------------------------------
                     W1ethgrpYP1 |
                              2  |   .0330522   .0192119     1.72   0.085    -.0046025    .0707068
                              3  |   .0963451   .0272313     3.54   0.000     .0429728    .1497174
                                 |
                    1.in_poverty |   .0249209   .0084037     2.97   0.003       .00845    .0413919
                                 |
                     W1hiqualgMP |
                  Low education  |   .0551695   .0088702     6.22   0.000     .0377843    .0725547
                                 |
                    W1SOCMajorMP |
        Low occupational status  |   .0262057   .0106254     2.47   0.014     .0053803     .047031
                      W1parmonMP |   .0096926   .0048295     2.01   0.045     .0002269    .0191583
                        W1dispar |  -.0158591   .0069884    -2.27   0.023    -.0295561   -.0021621
                       schooldis |    .019684   .0048648     4.05   0.000     .0101492    .0292188
                                 |
                     W1englangYP |
    English as Foreign Language  |  -.0689109   .0232851    -2.96   0.003    -.1145487    -.023273
                                 |
                       IndSchool |
                  Public school  |   .0120051   .0328376     0.37   0.715    -.0523554    .0763656
                                 |
                          urbind |
                          Urban  |   .0173727   .0082266     2.11   0.035     .0012487    .0334966
                                 |
                             gor |
               Northern England  |   .0026935   .0078317     0.34   0.731    -.0126562    .0180433
                                 |
                      W1truantYP |
                        Truancy  |   .0826806   .0126067     6.56   0.000     .0579719    .1073893
                   substance_use |    .031399   .0065837     4.77   0.000     .0184951    .0443028
                     delinquency |   .0232745   .0050122     4.64   0.000     .0134507    .0330983
    ----------------------------------------------------------------------------------------------
    Note: dy/dx for factor levels is the discrete change from the base level.
    
    . estimates store model3
    
    .
    end of do-file
    
    . do "C:\Users\sofiy\AppData\Local\Temp\STD33a4_000000.tmp"
    
    . estimates table model1 model2 model3, b(%10.3f) star stats (sd N chi2 rank aic bic) varlabel allbaselevels // appending models together
    
    --------------------------------------------------------------------------
                    Variable |    model1          model2          model3      
    -------------------------+------------------------------------------------
                          1  |     (base)          (base)          (base)    
                          2  |      0.412*          0.439*          0.410    
                          3  |      0.902***        1.040***        0.993***  
                             |                                                
    YP: Whether played tru~s |                                                
        Did not play truant  |     (base)          (base)          (base)    
                    Truancy  |      1.157***        0.938***        0.928***  
                             |
               substance_use |      0.442***        0.428***        0.438***  
                 delinquency |      0.374***        0.330***        0.324***  
                          0  |                     (base)          (base)    
                          1  |                      0.344**         0.329**  
                             |                                                
    DV: Highest qualificat~b |                                                
           Higher education  |                     (base)          (base)    
              Low education  |                      0.714***        0.696***  
                             |                                                
    DV: Major groupings fo~r |                                                
    Higher occupational s..  |                     (base)          (base)    
    Low occupational status  |                      0.350**         0.338**  
                             |
                  W1parmonMP |                      0.136*          0.135*    
                    W1dispar |                     -0.217*         -0.221*    
                   schooldis |                      0.278***        0.274***  
                             |                                                
    YP: Whether English is~  |                                                
    English as Main Langu..  |                     (base)          (base)    
    English as Foreign La..  |                     -1.647          -1.627    
                             |                                                
    DV: Whether YP was at ~n |                                                
             Private school  |                                     (base)    
              Public school  |                                      0.177    
                             |                                                
    Urban/Rural Indicator ~) |                                                
                  Non-urban  |                                     (base)    
                      Urban  |                                      0.254*    
                             |                                                
    Government Office Region |                                                
               Non-Northern  |                                     (base)    
           Northern England  |                                      0.037    
                    Constant |     -3.687***       -4.477***       -4.813***  
    -------------------------+------------------------------------------------
                          sd |                                                
                           N |       7352            7352            7352    
                        chi2 |    628.172         728.698         766.913    
                        rank |      6.000          13.000          16.000    
                         aic |   4857.797        4674.533        4673.417    
                         bic |   4899.214        4764.268        4783.860    
    --------------------------------------------------------------------------
                                      legend: * p<0.05; ** p<0.01; *** p<0.001
    
    .
    .
    . putdocx clear
    
    . putdocx begin // writes into Word
    
    . putdocx table tb6 = etable // specifying table name
    
    . putdocx save results3, replace // specifying document name
    successfully replaced "C:/Users/sofiy/Desktop/Studies 2021-2022/Summer Term 2023/Thesis/results3.docx"
    
    .
    end of do-file
    Last edited by Sofiya Volvakova; 10 Mar 2024, 10:41.

  • #2
    estimates table model1 model2 model3, b(%10.3f) star stats (sd N chi2 rank aic bic) varlabel allbaselevels // appending models together
    needs to include the option -se-

    Code:
    estimates table model1 model2 model3, b(%10.3f) se(%10.2f) star stats (sd N chi2 rank aic bic) varlabel allbaselevels

    Comment


    • #3
      Originally posted by Andrew Musau View Post

      needs to include the option -se-

      Code:
      estimates table model1 model2 model3, b(%10.3f) se(%10.2f) star stats (sd N chi2 rank aic bic) varlabel allbaselevels
      Andrew, you're a star! Thanks so much for your help

      Comment

      Working...
      X