Hi,
I am trying to export my logit results into Word, however, putdocx only exports coefficients and significance levels. How do I also include standard error under coefficients?
I am trying to export my logit results into Word, however, putdocx only exports coefficients and significance levels. How do I also include standard error under coefficients?
Code:
. ssc install dataex checking dataex consistency and verifying not already installed... all files already exist and are up to date. . do "C:\Users\sofiy\AppData\Local\Temp\STD33a4_000000.tmp" . logit W1ExcludeYP i.W1ethgrpYP1 i.in_poverty i.W1hiqualgMP i.W1SOCMajorMP W1parmonMP W1dispar c.schooldis i.W1englangYP i.W1truantYP substance_use delinquency if mysample [pweight = Designweight], v > ce (cluster SampPSU) // Model 2 Iteration 0: log pseudolikelihood = -2753.1739 Iteration 1: log pseudolikelihood = -2525.1759 Iteration 2: log pseudolikelihood = -2327.3282 Iteration 3: log pseudolikelihood = -2324.2697 Iteration 4: log pseudolikelihood = -2324.2664 Iteration 5: log pseudolikelihood = -2324.2664 Logistic regression Number of obs = 7,352 Wald chi2(12) = 728.70 Prob > chi2 = 0.0000 Log pseudolikelihood = -2324.2664 Pseudo R2 = 0.1558 (Std. Err. adjusted for 637 clusters in SampPSU) ---------------------------------------------------------------------------------------------- | Robust W1ExcludeYP | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------------------+---------------------------------------------------------------- W1ethgrpYP1 | 2 | .4389618 .2122285 2.07 0.039 .0230015 .8549221 3 | 1.039686 .2147347 4.84 0.000 .6188138 1.460558 | 1.in_poverty | .3435475 .1057649 3.25 0.001 .1362522 .5508428 | W1hiqualgMP | Low education | .7137303 .0984105 7.25 0.000 .5208493 .9066112 | W1SOCMajorMP | Low occupational status | .3495525 .1262489 2.77 0.006 .1021093 .5969957 W1parmonMP | .1356613 .0679428 2.00 0.046 .0024958 .2688268 W1dispar | -.2167022 .0968772 -2.24 0.025 -.406578 -.0268263 schooldis | .2782936 .0667631 4.17 0.000 .1474403 .4091468 | W1englangYP | English as Foreign Language | -1.647494 1.09933 -1.50 0.134 -3.802142 .5071542 | W1truantYP | Truancy | .9379643 .1173101 8.00 0.000 .7080407 1.167888 substance_use | .4282403 .0922831 4.64 0.000 .2473688 .6091118 delinquency | .3303547 .0698884 4.73 0.000 .1933758 .4673335 _cons | -4.477077 .3851041 -11.63 0.000 -5.231868 -3.722287 ---------------------------------------------------------------------------------------------- . margins, dydx (W1ethgrpYP1 in_poverty W1hiqualgMP W1SOCMajorMP W1parmonMP W1dispar schooldis W1englangYP W1truantYP substance_use delinquency) Average marginal effects Number of obs = 7,352 Model VCE : Robust Expression : Pr(W1ExcludeYP), predict() dy/dx w.r.t. : 2.W1ethgrpYP1 3.W1ethgrpYP1 1.in_poverty 2.W1hiqualgMP 2.W1SOCMajorMP W1parmonMP W1dispar schooldis 1.W1englangYP 1.W1truantYP substance_use delinquency ---------------------------------------------------------------------------------------------- | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -----------------------------+---------------------------------------------------------------- W1ethgrpYP1 | 2 | .0357636 .0195382 1.83 0.067 -.0025305 .0740577 3 | .1024289 .0272256 3.76 0.000 .0490677 .1557902 | 1.in_poverty | .0261442 .0085119 3.07 0.002 .0094611 .0428272 | W1hiqualgMP | Low education | .0568304 .0087276 6.51 0.000 .0397246 .0739362 | W1SOCMajorMP | Low occupational status | .0271704 .0106389 2.55 0.011 .0063186 .0480222 W1parmonMP | .0097422 .0048559 2.01 0.045 .0002249 .0192595 W1dispar | -.015562 .0070022 -2.22 0.026 -.0292861 -.0018378 schooldis | .019985 .0048564 4.12 0.000 .0104666 .0295035 | W1englangYP | English as Foreign Language | -.0693678 .0228426 -3.04 0.002 -.1141386 -.0245971 | W1truantYP | Truancy | .083903 .0127278 6.59 0.000 .0589569 .1088491 substance_use | .0307531 .0066712 4.61 0.000 .0176778 .0438285 delinquency | .0237237 .0050327 4.71 0.000 .0138598 .0335875 ---------------------------------------------------------------------------------------------- Note: dy/dx for factor levels is the discrete change from the base level. . estimates store model2 . end of do-file . do "C:\Users\sofiy\AppData\Local\Temp\STD33a4_000000.tmp" . logit W1ExcludeYP i.W1ethgrpYP1 i.in_poverty i.W1hiqualgMP i.W1SOCMajorMP W1parmonMP W1dispar c.schooldis i.W1englangYP i.IndSchool i.urbind i.gor i.W1truantYP substance_use delinquency if mysample > [pweight = Designweight], vce (cluster SampPSU) // Model 2 Iteration 0: log pseudolikelihood = -2753.1739 Iteration 1: log pseudolikelihood = -2522.6522 Iteration 2: log pseudolikelihood = -2323.8644 Iteration 3: log pseudolikelihood = -2320.7121 Iteration 4: log pseudolikelihood = -2320.7083 Iteration 5: log pseudolikelihood = -2320.7083 Logistic regression Number of obs = 7,352 Wald chi2(15) = 766.91 Prob > chi2 = 0.0000 Log pseudolikelihood = -2320.7083 Pseudo R2 = 0.1571 (Std. Err. adjusted for 637 clusters in SampPSU) ---------------------------------------------------------------------------------------------- | Robust W1ExcludeYP | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------------------+---------------------------------------------------------------- W1ethgrpYP1 | 2 | .4097703 .212487 1.93 0.054 -.0066964 .8262371 3 | .9929835 .2197574 4.52 0.000 .5622668 1.4237 | 1.in_poverty | .3287288 .1049728 3.13 0.002 .1229859 .5344718 | W1hiqualgMP | Low education | .6958219 .1006095 6.92 0.000 .498631 .8930129 | W1SOCMajorMP | Low occupational status | .3384298 .1268992 2.67 0.008 .0897118 .5871477 W1parmonMP | .1351199 .0676346 2.00 0.046 .0025586 .2676813 W1dispar | -.2210846 .096875 -2.28 0.022 -.4109562 -.031213 schooldis | .2744052 .066923 4.10 0.000 .1432385 .4055719 | W1englangYP | English as Foreign Language | -1.62687 1.101177 -1.48 0.140 -3.785137 .5313964 | IndSchool | Public school | .1766755 .5116462 0.35 0.730 -.8261325 1.179484 | urbind | Urban | .2540162 .1263526 2.01 0.044 .0063697 .5016627 | gor | Northern England | .0373869 .1082035 0.35 0.730 -.1746881 .249462 | W1truantYP | Truancy | .9279133 .1169936 7.93 0.000 .69861 1.157217 substance_use | .4377186 .0911451 4.80 0.000 .2590775 .6163597 delinquency | .3244598 .0696483 4.66 0.000 .1879517 .4609679 _cons | -4.812779 .6214717 -7.74 0.000 -6.030841 -3.594716 ---------------------------------------------------------------------------------------------- . margins, dydx (W1ethgrpYP1 in_poverty W1hiqualgMP W1SOCMajorMP W1parmonMP W1dispar schooldis W1englangYP IndSchool urbind gor W1truantYP substance_use delinquency) Average marginal effects Number of obs = 7,352 Model VCE : Robust Expression : Pr(W1ExcludeYP), predict() dy/dx w.r.t. : 2.W1ethgrpYP1 3.W1ethgrpYP1 1.in_poverty 2.W1hiqualgMP 2.W1SOCMajorMP W1parmonMP W1dispar schooldis 1.W1englangYP 1.IndSchool 2.urbind 2.gor 1.W1truantYP substance_use delinquency ---------------------------------------------------------------------------------------------- | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -----------------------------+---------------------------------------------------------------- W1ethgrpYP1 | 2 | .0330522 .0192119 1.72 0.085 -.0046025 .0707068 3 | .0963451 .0272313 3.54 0.000 .0429728 .1497174 | 1.in_poverty | .0249209 .0084037 2.97 0.003 .00845 .0413919 | W1hiqualgMP | Low education | .0551695 .0088702 6.22 0.000 .0377843 .0725547 | W1SOCMajorMP | Low occupational status | .0262057 .0106254 2.47 0.014 .0053803 .047031 W1parmonMP | .0096926 .0048295 2.01 0.045 .0002269 .0191583 W1dispar | -.0158591 .0069884 -2.27 0.023 -.0295561 -.0021621 schooldis | .019684 .0048648 4.05 0.000 .0101492 .0292188 | W1englangYP | English as Foreign Language | -.0689109 .0232851 -2.96 0.003 -.1145487 -.023273 | IndSchool | Public school | .0120051 .0328376 0.37 0.715 -.0523554 .0763656 | urbind | Urban | .0173727 .0082266 2.11 0.035 .0012487 .0334966 | gor | Northern England | .0026935 .0078317 0.34 0.731 -.0126562 .0180433 | W1truantYP | Truancy | .0826806 .0126067 6.56 0.000 .0579719 .1073893 substance_use | .031399 .0065837 4.77 0.000 .0184951 .0443028 delinquency | .0232745 .0050122 4.64 0.000 .0134507 .0330983 ---------------------------------------------------------------------------------------------- Note: dy/dx for factor levels is the discrete change from the base level. . estimates store model3 . end of do-file . do "C:\Users\sofiy\AppData\Local\Temp\STD33a4_000000.tmp" . estimates table model1 model2 model3, b(%10.3f) star stats (sd N chi2 rank aic bic) varlabel allbaselevels // appending models together -------------------------------------------------------------------------- Variable | model1 model2 model3 -------------------------+------------------------------------------------ 1 | (base) (base) (base) 2 | 0.412* 0.439* 0.410 3 | 0.902*** 1.040*** 0.993*** | YP: Whether played tru~s | Did not play truant | (base) (base) (base) Truancy | 1.157*** 0.938*** 0.928*** | substance_use | 0.442*** 0.428*** 0.438*** delinquency | 0.374*** 0.330*** 0.324*** 0 | (base) (base) 1 | 0.344** 0.329** | DV: Highest qualificat~b | Higher education | (base) (base) Low education | 0.714*** 0.696*** | DV: Major groupings fo~r | Higher occupational s.. | (base) (base) Low occupational status | 0.350** 0.338** | W1parmonMP | 0.136* 0.135* W1dispar | -0.217* -0.221* schooldis | 0.278*** 0.274*** | YP: Whether English is~ | English as Main Langu.. | (base) (base) English as Foreign La.. | -1.647 -1.627 | DV: Whether YP was at ~n | Private school | (base) Public school | 0.177 | Urban/Rural Indicator ~) | Non-urban | (base) Urban | 0.254* | Government Office Region | Non-Northern | (base) Northern England | 0.037 Constant | -3.687*** -4.477*** -4.813*** -------------------------+------------------------------------------------ sd | N | 7352 7352 7352 chi2 | 628.172 728.698 766.913 rank | 6.000 13.000 16.000 aic | 4857.797 4674.533 4673.417 bic | 4899.214 4764.268 4783.860 -------------------------------------------------------------------------- legend: * p<0.05; ** p<0.01; *** p<0.001 . . . putdocx clear . putdocx begin // writes into Word . putdocx table tb6 = etable // specifying table name . putdocx save results3, replace // specifying document name successfully replaced "C:/Users/sofiy/Desktop/Studies 2021-2022/Summer Term 2023/Thesis/results3.docx" . end of do-file
Comment