Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Metaregression using metareg: difficult for categorical variables

    Hello everyone! I am performing a meta-analysis in Medicine (Gastroenterology) on mortality rates in a liver disease (ACLF). I wish to perform a meta-regression analysis to explain heterogeneity in 30 day mortality rates based on both 1) region of the world from which study orignated and 2) mean severity of liver disease (mean MELD). For ease I've included an effect size and SE of effect size variable generated by metaprop command. Can someone help me create a result output where we can identify role of each region towards heterogeneity in mortality? (base reference for categorical variable whoregion can be taken as "4")

    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input float mortality30 long totalfor30days double(_ES _seES) byte whoregion double meanmeld
       85    280 .30357142857142855  .02747829119287563 4     .
       30     46  .6521739130434783   .0702237263554129 2 24.32
       45     90                 .5  .05270462766947299 4     .
       18     29  .6206896551724138   .0901022421425571 2  20.7
      164    274  .5985401459854015 .029613682945974978 2    26
       33     74 .44594594594594594 .057783164016762936 6    28
       64    200                .32  .03298484500494128 6    24
       33     88               .375 .051607676490298154 6  26.3
       38    108 .35185185185185186  .04595208114017962 4    23
       12     24                 .5  .10206207261596575 2  21.7
       40     78  .5128205128205128 .056595237913628776 4  29.7
       22     49  .4489795918367347   .0710557294866119 4  22.1
       33     42  .7857142857142857  .06331466145913703 6    25
       11     18  .6111111111111112  .11490438561102646 2  23.4
        4     14  .2857142857142857   .1207363221040738 6    18
       68    122  .5573770491803278  .04496883020924807 3  31.6
       79    222 .35585585585585583  .03213306131260457 4 23.72
       42     59   .711864406779661 .058961848213434656 5    36
        0    103                  0 .006782739974466059 4    23
       38     75  .5066666666666667  .05772989468846051 4  24.6
       67    252 .26587301587301587  .02783059262979156 6    26
       99     99                  1 .007053367989832942 4    30
      171    334  .5119760479041916 .027350933725897416 3  26.8
       10     24  .4166666666666667  .10063456073742666 4    29
        7     15  .4666666666666667  .12881223774390613 6 24.69
       15     39 .38461538461538464  .07790302823720513 4    27
       17     40               .425  .07816249100431741 3    26
       39    104               .375  .04747215783204687 4  21.3
       17     39  .4358974358974359   .0794033618863734 4    31
       11     27  .4074074074074074  .09456070200062598 6 30.52
       16     59  .2711864406779661 .057878357986615475 4    19
       42     77  .5454545454545454 .056744343993850845 4    26
       40     71  .5633802816901409  .05886041495942303 4    27
       17     38  .4473684210526316  .08066009201997748 4  23.3
       49     58  .8448275862068966  .04754198431127886 4  26.5
       12     50                .24    .060398675482166 4    28
        7     22  .3181818181818182  .09930260198923897 4  25.5
       47     92  .5108695652173914  .05211628433566957 6    18
       15     57  .2631578947368421  .05832543563196217 4    27
       45    125                .36  .04293250516799597 6  25.5
       16     22  .7272727272727273  .09495144870310791 4    31
      107    249 .42971887550200805  .03137162683122028 6    23
       17     44 .38636363636363635  .07340528480781205 4     .
       45     52  .8653846153846154  .04733149927744425 5     .
       14     70                 .2 .047809144373375745 3     .
       44     58  .7586206896551724 .056188619979598856 2     .
       18     40                .45  .07866066361276136 5    28
       97    148  .6554054054054054  .03906415028693721 2     .
      185    249  .7429718875502008 .027693435194149907 5  17.3
       88    176                 .5 .037688918072220454 4     .
       29     89  .3258426966292135  .04968091823711921 4    22
       55    153 .35947712418300654  .03879334568065554 4    26
      200    346  .5780346820809249  .02655077959473571 3    27
      682   1112  .6133093525179856 .014603912905486616 3     .
        8     39 .20512820512820512    .064658991995499 3     .
       47    102 .46078431372549017 .049354870426373425 3     .
       45     91  .4945054945054945 .052411077011539936 3    29
       53    100                .53  .04990991885387112 3    31
       34     54  .6296296296296297  .06571489474350334 3  30.6
       51    106  .4811320754716981  .04852970316111162 3    33
      266    530  .5018867924528302 .021718457501703082 6     .
       24     53  .4528301886792453  .06837397288386757 6  22.8
       19     44  .4318181818181818  .07467372053099669 3    24
      119    164   .725609756097561  .03484287360681495 6     .
       12     30                 .4  .08944271909999159 6  27.2
       21     50                .42  .06979971346646059 3    29
        4     66 .06060606060606061  .02937040512712484 6    21
      447   1049  .4261201143946616 .015268232861157138 3    27
        4     10                 .4  .15491933384829668 6    27
       58    109  .5321100917431193  .04779245478127932 6    24
       28     28                  1 .024171880321350914 3 36.15
        0     36                  0  .01898142653058624 3  26.8
      115    188  .6117021276595744 .035544595504167935 6    25
       10     50                 .2   .0565685424949238 3     .
       82    208  .3942307692307692  .03388419686555204 3 25.56
       10     40                .25  .06846531968814576 6  24.6
       35    446 .07847533632286996 .012733642273220071 4 19.13
       41    155  .2645161290322581  .03542801393048125 6     .
     1424   3009  .4732469258889997 .009101989838389698 3    28
      146    689 .21190130624092887  .01556852648502191 6  23.1
       28     50                .56  .07019971509913697 3 24.93
       62    248                .25  .02749633406650374 6     .
       23    400              .0575  .01163977555625537 6    22
      109    264  .4128787878787879 .030302133538154235 2     .
    55663 106634  .5220004876493426 .001529682614815464 2     .
       50     67   .746268656716418 .053161503959820555 4    27
       51    117  .4358974358974359  .04584355235965895 4    24
       90    159  .5660377358490566 .039305209333871195 4  16.4
       30     80               .375  .05412658773652741 6    26
      941   1934 .48655635987590484   .0113654001627059 6     .
       55    200               .275 .031573327350787724 6  24.7
       15     34  .4411764705882353  .08515380416833711 6    29
       18     53 .33962264150943394  .06505137344040325 6    27
      195    525 .37142857142857144 .021087996484351088 6  23.5
    end
    label values whoregion whoregion
    label def whoregion 2 "Americas", modify
    label def whoregion 3 "South-East Asian", modify
    label def whoregion 4 "European", modify
    label def whoregion 5 "Eastern-Mediterranean Region", modify
    label def whoregion 6 "Western-Pacific Region", modify
    label var mortality30 "n"
    label var totalfor30days "N"
    label var _ES "Effect size"
    label var _seES "Standard error of effect size"
    label var whoregion "WHO Region"
    label var meanmeld "Mean MELD"
Working...
X