Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Importing results into Word

    Hey,

    How can I import the result into Word with number of cases and pseudo r squared at the bottom of the table? Any help will be greatly appreciated!

    Code:
    . ssc install dataex
    checking dataex consistency and verifying not already installed...
    all files already exist and are up to date.
    
    . do "C:\Users\sofiy\AppData\Local\Temp\STD890_000000.tmp"
    
    . ssc install mimrgns // for displaying Average Marginal Effect (AME) after imputation
    checking mimrgns consistency and verifying not already installed...
    all files already exist and are up to date.
    
    . 
    . mi estimate: logit W1ExcludeYP i.W1ethgrpYP i.W1truantYP substance_use delinquency [pweight = Designweight], vce (cluster SampPSU) // Model 1
    
    Multiple-imputation estimates                   Imputations       =         20
    Logistic regression                             Number of obs     =     13,179
                                                    Average RVI       =     0.2268
                                                    Largest FMI       =     0.4353
    DF adjustment:   Large sample                   DF:     min       =     105.33
                                                            avg       =  11,096.99
                                                            max       =  76,605.03
    Model F test:       Equal FMI                   F(  10, 5083.8)   =      83.88
    Within VCE type:       Robust                   Prob > F          =     0.0000
    
                                     (Within VCE adjusted for 657 clusters in SampPSU)
    ----------------------------------------------------------------------------------
         W1ExcludeYP |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
          W1ethgrpYP |
              Mixed  |   .3225374   .1657035     1.95   0.052    -.0022466    .6473215
             Indian  |  -.4764003   .1930587    -2.47   0.014    -.8560952   -.0967054
          Pakistani  |   .0960448   .1851026     0.52   0.604    -.2690901    .4611796
        Bangladeshi  |   .1531705   .2124236     0.72   0.472    -.2680108    .5743518
    Black Caribbean  |   .8547337   .1650894     5.18   0.000     .5311594    1.178308
      Black African  |   .2310925    .221778     1.04   0.298     -.203797     .665982
              Other  |   .2327155   .2701427     0.86   0.390    -.2986834    .7641145
                     |
          W1truantYP |
            Truancy  |   1.120452   .0916305    12.23   0.000     .9406731     1.30023
       substance_use |    .445085   .0810841     5.49   0.000     .2860448    .6041252
         delinquency |   .4182767   .0571057     7.32   0.000     .3062813    .5302721
               _cons |  -3.662631   .1404941   -26.07   0.000    -3.938164   -3.387099
    ----------------------------------------------------------------------------------
    
    . mimrgns, dydx(W1ethgrpYP W1truantYP substance_use delinquency) predict(pr) // AVE
    
    Multiple-imputation estimates                   Imputations       =         20
    Average marginal effects                        Number of obs     =     13,179
                                                    Average RVI       =     0.2314
                                                    Largest FMI       =     0.4339
    DF adjustment:   Large sample                   DF:     min       =     106.01
                                                            avg       =  11,095.43
    Within VCE type: Delta-method                           max       =  64,520.55
    
    Expression   : Pr(W1ExcludeYP), predict(pr)
    dy/dx w.r.t. : 2.W1ethgrpYP 3.W1ethgrpYP 4.W1ethgrpYP 5.W1ethgrpYP 6.W1ethgrpYP 7.W1ethgrpYP 8.W1ethgrpYP 1.W1truantYP substance_use delinquency
    
    ----------------------------------------------------------------------------------
                     |      dy/dx   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
          W1ethgrpYP |
              Mixed  |   .0291455    .016369     1.78   0.075    -.0029382    .0612292
             Indian  |  -.0328235   .0115853    -2.83   0.005    -.0556046   -.0100424
          Pakistani  |   .0083399   .0159678     0.52   0.602    -.0231682    .0398479
        Bangladeshi  |   .0135808   .0189144     0.72   0.474    -.0239189    .0510805
    Black Caribbean  |   .0915785   .0218707     4.19   0.000      .048712    .1344451
      Black African  |   .0203579   .0207511     0.98   0.327    -.0203329    .0610488
              Other  |   .0208727   .0255618     0.82   0.415     -.029425    .0711703
                     |
          W1truantYP |
            Truancy  |   .1205845    .012445     9.69   0.000     .0961747    .1449944
       substance_use |   .0366144   .0068251     5.36   0.000     .0232271    .0500017
         delinquency |   .0344023   .0046561     7.39   0.000     .0252716    .0435329
    ----------------------------------------------------------------------------------
    Note: dy/dx for factor levels is the discrete change from the base level.
    
    
    . mi describe
    
      Style:  mlong
              last mi update 06mar2024 18:15:02, 23 seconds ago
    
      Obs.:   complete        8,824
              incomplete      4,715  (M = 20 imputations)
              ---------------------
              total          13,539
    
      Vars.:  imputed:  13; W1ethgrpYP(21) in_poverty(0) W1hiqualgMP(541) W1SOCMajorMP(1408) W1englangYP(191) IndSchool(0) gor(8) urbind(8) W1truantYP(1033) substance_use(936) delinquency(1168)
                        school_disengagement(1835) W1heposs9YP(777)
    
              passive:  0
    
              regular:  0
    
              system:   3; _mi_m _mi_id _mi_miss
    
             (there are 2038 unregistered variables)
    
    . local mtotal = r(M)
    
    . local r2 = 0
    
    . forvalues i = 1 / `mtotal' {
      2.     logit W1ExcludeYP i.W1ethgrpYP i.W1truantYP substance_use delinquency if _mi_m == `i'
      3.     local r2 = `r2' + e(r2_p)
      4. }
    
    Iteration 0:   log likelihood = -1837.0555  
    Iteration 1:   log likelihood = -1660.4176  
    Iteration 2:   log likelihood = -1610.7318  
    Iteration 3:   log likelihood = -1610.4145  
    Iteration 4:   log likelihood = -1610.4144  
    
    Logistic regression                             Number of obs     =      4,715
                                                    LR chi2(10)       =     453.28
                                                    Prob > chi2       =     0.0000
    Log likelihood = -1610.4144                     Pseudo R2         =     0.1234
    
    ----------------------------------------------------------------------------------
         W1ExcludeYP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
          W1ethgrpYP |
              Mixed  |  -.0561942   .2039112    -0.28   0.783    -.4558529    .3434645
             Indian  |  -.7040989   .2671199    -2.64   0.008    -1.227644   -.1805534
          Pakistani  |  -.0428148   .1726379    -0.25   0.804    -.3811789    .2955492
        Bangladeshi  |  -.1157213   .1777028    -0.65   0.515    -.4640124    .2325699
    Black Caribbean  |   .8962012   .2104676     4.26   0.000     .4836924     1.30871
      Black African  |  -.0242819   .2409743    -0.10   0.920    -.4965828     .448019
              Other  |   .3109313   .2596396     1.20   0.231     -.197953    .8198157
                     |
          W1truantYP |
            Truancy  |   .9902644   .1068622     9.27   0.000     .7808183     1.19971
       substance_use |    .375692     .09918     3.79   0.000     .1813029    .5700811
         delinquency |   .5234286   .0670979     7.80   0.000     .3919191     .654938
               _cons |  -3.598544   .1699888   -21.17   0.000    -3.931715   -3.265372
    ----------------------------------------------------------------------------------
    
    Iteration 0:   log likelihood =  -1866.995  
    Iteration 1:   log likelihood = -1698.4839  
    Iteration 2:   log likelihood = -1653.9004  
    Iteration 3:   log likelihood = -1653.6321  
    Iteration 4:   log likelihood =  -1653.632  
    
    Logistic regression                             Number of obs     =      4,715
                                                    LR chi2(10)       =     426.73
                                                    Prob > chi2       =     0.0000
    Log likelihood =  -1653.632                     Pseudo R2         =     0.1143
    
    ----------------------------------------------------------------------------------
         W1ExcludeYP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
          W1ethgrpYP |
              Mixed  |   .0129823   .2001656     0.06   0.948    -.3793352    .4052997
             Indian  |  -.4582114   .2468794    -1.86   0.063    -.9420861    .0256633
          Pakistani  |   .0876595   .1656657     0.53   0.597    -.2370393    .4123584
        Bangladeshi  |  -.1864405   .1827914    -1.02   0.308    -.5447052    .1718241
    Black Caribbean  |   .8487998   .2102945     4.04   0.000     .4366302    1.260969
      Black African  |    .184924   .2255799     0.82   0.412    -.2572045    .6270525
              Other  |   .5617009   .2448062     2.29   0.022     .0818897    1.041512
                     |
          W1truantYP |
            Truancy  |    .931942   .1067091     8.73   0.000     .7227959    1.141088
       substance_use |   .5379987   .0990777     5.43   0.000     .3438101    .7321874
         delinquency |   .3934377   .0673583     5.84   0.000     .2614179    .5254575
               _cons |  -3.294041   .1673816   -19.68   0.000    -3.622103   -2.965979
    ----------------------------------------------------------------------------------
    
    Iteration 0:   log likelihood = -1844.5845  
    Iteration 1:   log likelihood = -1672.1388  
    Iteration 2:   log likelihood = -1625.2088  
    Iteration 3:   log likelihood = -1624.9067  
    Iteration 4:   log likelihood = -1624.9067  
    
    Logistic regression                             Number of obs     =      4,715
                                                    LR chi2(10)       =     439.36
                                                    Prob > chi2       =     0.0000
    Log likelihood = -1624.9067                     Pseudo R2         =     0.1191
    
    ----------------------------------------------------------------------------------
         W1ExcludeYP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
          W1ethgrpYP |
              Mixed  |  -.0564516   .2040956    -0.28   0.782    -.4564715    .3435684
             Indian  |  -.5773157   .2606406    -2.21   0.027    -1.088162   -.0664694
          Pakistani  |   .0561259   .1689183     0.33   0.740    -.2749479    .3871997
        Bangladeshi  |   .2396301   .1620555     1.48   0.139    -.0779929    .5572531
    Black Caribbean  |   .8811197   .2135294     4.13   0.000     .4626097     1.29963
      Black African  |   -.211779   .2591963    -0.82   0.414    -.7197945    .2962364
              Other  |   .3097087   .2602789     1.19   0.234    -.2004285     .819846
                     |
          W1truantYP |
            Truancy  |   .9310005   .1082325     8.60   0.000     .7188687    1.143132
       substance_use |   .3948941   .0990204     3.99   0.000     .2008177    .5889706
         delinquency |   .5302961   .0670966     7.90   0.000     .3987891     .661803
               _cons |  -3.618555   .1698609   -21.30   0.000    -3.951476   -3.285634
    ----------------------------------------------------------------------------------
    
    Iteration 0:   log likelihood = -1798.9622  
    Iteration 1:   log likelihood = -1618.6988  
    Iteration 2:   log likelihood = -1559.9219  
    Iteration 3:   log likelihood = -1559.3793  
    Iteration 4:   log likelihood = -1559.3791  
    Iteration 5:   log likelihood = -1559.3791  
    
    Logistic regression                             Number of obs     =      4,715
                                                    LR chi2(10)       =     479.17
                                                    Prob > chi2       =     0.0000
    Log likelihood = -1559.3791                     Pseudo R2         =     0.1332
    
    ----------------------------------------------------------------------------------
         W1ExcludeYP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
          W1ethgrpYP |
              Mixed  |  -.0342818   .2038641    -0.17   0.866    -.4338481    .3652844
             Indian  |   -.747484   .2753555    -2.71   0.007    -1.287171   -.2077971
          Pakistani  |  -.3367758   .1924594    -1.75   0.080    -.7139892    .0404376
        Bangladeshi  |   .0455778   .1729121     0.26   0.792    -.2933237    .3844792
    Black Caribbean  |   .8029016    .215135     3.73   0.000     .3812447    1.224559
      Black African  |  -.0810632   .2496775    -0.32   0.745     -.570422    .4082956
              Other  |   .1825072   .2727309     0.67   0.503    -.3520355    .7170499
                     |
          W1truantYP |
            Truancy  |    1.09738   .1094849    10.02   0.000     .8827932    1.311966
       substance_use |   .2878147    .099593     2.89   0.004     .0926161    .4830134
         delinquency |   .5500065   .0682617     8.06   0.000     .4162161    .6837969
               _cons |  -3.690721   .1727497   -21.36   0.000    -4.029304   -3.352137
    ----------------------------------------------------------------------------------
    
    Iteration 0:   log likelihood = -1840.8237  
    Iteration 1:   log likelihood = -1672.6861  
    Iteration 2:   log likelihood = -1625.8272  
    Iteration 3:   log likelihood = -1625.5312  
    Iteration 4:   log likelihood = -1625.5312  
    
    Logistic regression                             Number of obs     =      4,715
                                                    LR chi2(10)       =     430.59
                                                    Prob > chi2       =     0.0000
    Log likelihood = -1625.5312                     Pseudo R2         =     0.1170
    
    ----------------------------------------------------------------------------------
         W1ExcludeYP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
          W1ethgrpYP |
              Mixed  |   .0039647   .1999813     0.02   0.984    -.3879915    .3959209
             Indian  |  -.6838362   .2653805    -2.58   0.010    -1.203972      -.1637
          Pakistani  |    -.25032   .1829075    -1.37   0.171     -.608812    .1081721
        Bangladeshi  |   .0800821   .1667861     0.48   0.631    -.2468126    .4069769
    Black Caribbean  |   .8769927   .2102988     4.17   0.000     .4648147    1.289171
      Black African  |  -.1405916   .2468781    -0.57   0.569    -.6244639    .3432807
              Other  |  -.0038049   .2831061    -0.01   0.989    -.5586827    .5510729
                     |
          W1truantYP |
            Truancy  |   .8754454   .1079443     8.11   0.000     .6638784    1.087012
       substance_use |   .4294231   .0984971     4.36   0.000     .2363724    .6224739
         delinquency |    .495686   .0671439     7.38   0.000     .3640863    .6272857
               _cons |  -3.490939   .1689765   -20.66   0.000    -3.822126   -3.159751
    ----------------------------------------------------------------------------------
    
    Iteration 0:   log likelihood = -1857.6893  
    Iteration 1:   log likelihood = -1678.8291  
    Iteration 2:   log likelihood = -1629.6489  
    Iteration 3:   log likelihood = -1629.3129  
    Iteration 4:   log likelihood = -1629.3129  
    
    Logistic regression                             Number of obs     =      4,715
                                                    LR chi2(10)       =     456.75
                                                    Prob > chi2       =     0.0000
    Log likelihood = -1629.3129                     Pseudo R2         =     0.1229
    
    ----------------------------------------------------------------------------------
         W1ExcludeYP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
          W1ethgrpYP |
              Mixed  |   .1173016   .1981742     0.59   0.554    -.2711126    .5057158
             Indian  |  -.2123337   .2272383    -0.93   0.350    -.6577126    .2330453
          Pakistani  |   .0080986   .1714339     0.05   0.962    -.3279057    .3441029
        Bangladeshi  |   .0624273   .1690852     0.37   0.712    -.2689737    .3938282
    Black Caribbean  |   .8059332   .2154008     3.74   0.000     .3837553    1.228111
      Black African  |  -.1933331   .2542764    -0.76   0.447    -.6917057    .3050394
              Other  |   .0994583   .2772876     0.36   0.720    -.4440154     .642932
                     |
          W1truantYP |
            Truancy  |   1.007908    .105268     9.57   0.000     .8015865     1.21423
       substance_use |   .4602453    .097535     4.72   0.000     .2690801    .6514105
         delinquency |   .4814542   .0666349     7.23   0.000     .3508523    .6120562
               _cons |  -3.530009   .1680786   -21.00   0.000    -3.859437   -3.200581
    ----------------------------------------------------------------------------------
    
    Iteration 0:   log likelihood = -1857.6893  
    Iteration 1:   log likelihood = -1665.5824  
    Iteration 2:   log likelihood = -1611.7253  
    Iteration 3:   log likelihood = -1611.2282  
    Iteration 4:   log likelihood = -1611.2278  
    Iteration 5:   log likelihood = -1611.2278  
    
    Logistic regression                             Number of obs     =      4,715
                                                    LR chi2(10)       =     492.92
                                                    Prob > chi2       =     0.0000
    Log likelihood = -1611.2278                     Pseudo R2         =     0.1327
    
    ----------------------------------------------------------------------------------
         W1ExcludeYP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
          W1ethgrpYP |
              Mixed  |  -.0640202   .2044931    -0.31   0.754    -.4648192    .3367789
             Indian  |  -.8638843    .292167    -2.96   0.003    -1.436521   -.2912476
          Pakistani  |   .0604544   .1686397     0.36   0.720    -.2700733     .390982
        Bangladeshi  |   .2143449   .1630354     1.31   0.189    -.1051987    .5338885
    Black Caribbean  |   .8364777   .2138101     3.91   0.000     .4174175    1.255538
      Black African  |   .0558075   .2377124     0.23   0.814    -.4101002    .5217152
              Other  |   .2657904   .2661288     1.00   0.318    -.2558125    .7873933
                     |
          W1truantYP |
            Truancy  |   1.063664   .1058193    10.05   0.000     .8562618    1.271066
       substance_use |   .4231122   .0984161     4.30   0.000     .2302201    .6160042
         delinquency |   .5255446   .0671495     7.83   0.000     .3939339    .6571553
               _cons |  -3.648775   .1703617   -21.42   0.000    -3.982678   -3.314872
    ----------------------------------------------------------------------------------
    
    Iteration 0:   log likelihood = -1874.4068  
    Iteration 1:   log likelihood = -1687.0233  
    Iteration 2:   log likelihood =  -1638.577  
    Iteration 3:   log likelihood = -1638.2662  
    Iteration 4:   log likelihood = -1638.2662  
    
    Logistic regression                             Number of obs     =      4,715
                                                    LR chi2(10)       =     472.28
                                                    Prob > chi2       =     0.0000
    Log likelihood = -1638.2662                     Pseudo R2         =     0.1260
    
    ----------------------------------------------------------------------------------
         W1ExcludeYP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
          W1ethgrpYP |
              Mixed  |  -.1256073   .2065792    -0.61   0.543    -.5304951    .2792806
             Indian  |  -.4748216   .2493171    -1.90   0.057    -.9634742    .0138309
          Pakistani  |  -.1752468   .1808212    -0.97   0.332    -.5296498    .1791563
        Bangladeshi  |   .3044519   .1587631     1.92   0.055    -.0067182    .6156219
    Black Caribbean  |   .9888162   .2096604     4.72   0.000     .5778893    1.399743
      Black African  |   .2273561   .2229584     1.02   0.308    -.2096343    .6643466
              Other  |   .4412831   .2559676     1.72   0.085    -.0604043    .9429704
                     |
          W1truantYP |
            Truancy  |   1.134778   .1057825    10.73   0.000     .9274484    1.342108
       substance_use |   .3501975    .099011     3.54   0.000     .1561395    .5442554
         delinquency |   .5016658   .0660928     7.59   0.000     .3721263    .6312053
               _cons |   -3.56952   .1677609   -21.28   0.000    -3.898325   -3.240714
    ----------------------------------------------------------------------------------
    
    Iteration 0:   log likelihood = -1840.8237  
    Iteration 1:   log likelihood = -1652.3516  
    Iteration 2:   log likelihood =  -1596.187  
    Iteration 3:   log likelihood = -1595.5838  
    Iteration 4:   log likelihood = -1595.5837  
    
    Logistic regression                             Number of obs     =      4,715
                                                    LR chi2(10)       =     490.48
                                                    Prob > chi2       =     0.0000
    Log likelihood = -1595.5837                     Pseudo R2         =     0.1332
    
    ----------------------------------------------------------------------------------
         W1ExcludeYP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
          W1ethgrpYP |
              Mixed  |   .1747051   .1963637     0.89   0.374    -.2101607    .5595709
             Indian  |   -.393535   .2451195    -1.61   0.108    -.8739603    .0868904
          Pakistani  |  -.0511766   .1779345    -0.29   0.774    -.3999217    .2975685
        Bangladeshi  |    .239316   .1644773     1.46   0.146    -.0830535    .5616855
    Black Caribbean  |   .8265279   .2184194     3.78   0.000     .3984338    1.254622
      Black African  |   .0970993   .2358773     0.41   0.681    -.3652117    .5594102
              Other  |  -.0258635   .2924141    -0.09   0.930    -.5989845    .5472575
                     |
          W1truantYP |
            Truancy  |   1.105012   .1067233    10.35   0.000      .895838    1.314185
       substance_use |   .4198164    .099101     4.24   0.000     .2255819    .6140508
         delinquency |    .505767   .0673682     7.51   0.000     .3737277    .6378062
               _cons |  -3.626437   .1700834   -21.32   0.000    -3.959794   -3.293079
    ----------------------------------------------------------------------------------
    
    Iteration 0:   log likelihood = -1879.9468  
    Iteration 1:   log likelihood = -1711.7163  
    Iteration 2:   log likelihood = -1669.1982  
    Iteration 3:   log likelihood = -1668.9662  
    Iteration 4:   log likelihood = -1668.9661  
    
    Logistic regression                             Number of obs     =      4,715
                                                    LR chi2(10)       =     421.96
                                                    Prob > chi2       =     0.0000
    Log likelihood = -1668.9661                     Pseudo R2         =     0.1122
    
    ----------------------------------------------------------------------------------
         W1ExcludeYP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
          W1ethgrpYP |
              Mixed  |  -.0391626   .1989966    -0.20   0.844    -.4291887    .3508634
             Indian  |  -.4922884    .247744    -1.99   0.047    -.9778577   -.0067191
          Pakistani  |  -.0241932   .1680794    -0.14   0.886    -.3536227    .3052363
        Bangladeshi  |   .0094297   .1668498     0.06   0.955      -.31759    .3364493
    Black Caribbean  |   .7868209   .2095033     3.76   0.000      .376202     1.19744
      Black African  |  -.0970611   .2387109    -0.41   0.684     -.564926    .3708037
              Other  |   .1469765   .2694579     0.55   0.585    -.3811512    .6751043
                     |
          W1truantYP |
            Truancy  |   .9638149   .1061125     9.08   0.000     .7558382    1.171792
       substance_use |   .3828141   .0978606     3.91   0.000     .1910108    .5746173
         delinquency |   .4829539   .0663914     7.27   0.000      .352829    .6130787
               _cons |  -3.437054   .1665307   -20.64   0.000    -3.763449    -3.11066
    ----------------------------------------------------------------------------------
    
    Iteration 0:   log likelihood = -1857.6893  
    Iteration 1:   log likelihood = -1666.8763  
    Iteration 2:   log likelihood = -1613.2844  
    Iteration 3:   log likelihood = -1612.7446  
    Iteration 4:   log likelihood = -1612.7444  
    Iteration 5:   log likelihood = -1612.7444  
    
    Logistic regression                             Number of obs     =      4,715
                                                    LR chi2(10)       =     489.89
                                                    Prob > chi2       =     0.0000
    Log likelihood = -1612.7444                     Pseudo R2         =     0.1319
    
    ----------------------------------------------------------------------------------
         W1ExcludeYP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
          W1ethgrpYP |
              Mixed  |  -.0713213   .2075266    -0.34   0.731    -.4780659    .3354232
             Indian  |  -.7454505   .2742179    -2.72   0.007    -1.282908   -.2079933
          Pakistani  |  -.0202646   .1732724    -0.12   0.907    -.3598722    .3193431
        Bangladeshi  |    .277475   .1609483     1.72   0.085    -.0379778    .5929278
    Black Caribbean  |   .8768586   .2141316     4.09   0.000     .4571684    1.296549
      Black African  |  -.1054676   .2494343    -0.42   0.672    -.5943499    .3834147
              Other  |   .0508665   .2863384     0.18   0.859    -.5103466    .6120795
                     |
          W1truantYP |
            Truancy  |   1.033875   .1069581     9.67   0.000     .8242406    1.243508
       substance_use |   .4905333   .0979874     5.01   0.000     .2984816    .6825849
         delinquency |   .4795226   .0672508     7.13   0.000     .3477134    .6113317
               _cons |  -3.529047   .1691795   -20.86   0.000    -3.860632   -3.197461
    ----------------------------------------------------------------------------------
    
    Iteration 0:   log likelihood = -1868.8507  
    Iteration 1:   log likelihood = -1694.1764  
    Iteration 2:   log likelihood = -1647.3608  
    Iteration 3:   log likelihood = -1647.0641  
    Iteration 4:   log likelihood =  -1647.064  
    
    Logistic regression                             Number of obs     =      4,715
                                                    LR chi2(10)       =     443.57
                                                    Prob > chi2       =     0.0000
    Log likelihood =  -1647.064                     Pseudo R2         =     0.1187
    
    ----------------------------------------------------------------------------------
         W1ExcludeYP |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
          W1ethgrpYP |
              Mixed  |   .0704776   .1992804     0.35   0.724    -.3201047      .46106
             Indian  |  -.4149028   .2486194    -1.67   0.095    -.9021878    .0723822
          Pakistani  |   .0152417   .1701385     0.09   0.929    -.3182237    .3487071
        Bangladeshi  |   .2348144   .1626919     1.44   0.149    -.0840558    .5536846
    Black Caribbean  |   .8816529   .2113914     4.17   0.000     .4673333    1.295972
      Black African  |   .1090667   .2326722     0.47   0.639    -.3469624    .5650958
              Other  |   .4904911   .2519187     1.95   0.052    -.0032605    .9842427
                     |
          W1truantYP |
            Truancy  |   1.059737   .1056875    10.03   0.000      .852593     1.26688
       substance_use |   .4524165   .0982201     4.61   0.000     .2599086    .6449244
         delinquency |   .4410016   .0669473     6.59   0.000     .3097873    .5722159
               _cons |  -3.442627   .1687656   -20.40   0.000    -3.773402   -3.111853
    ----------------------------------------------------------------------------------
    
    
    . di `r2' / `mtotal' // the average pseudo R-squared over all imputed datasets (i.e., it averages the pseudo R-squares from the 20 regressions) = 11.94
    .12179426
    
    . 
    end of do-file
    
    .
Working...
X