Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Analyzing the Behavior of GDP Across Countries Around Crisis Periods

    How can I create a graph to display the average behavior of GDP across countries around crisis periods?

    I have a panel dataset with cross-country data, including a crisis variable (0 and 1) and GDP growth.

    I want to show how the average GDP behaves during pre-crisis, crisis, and post-crisis periods (-3, -2, -1, 0, 1, 2, 3). H

    Help me to create the STATA code for this graph?

    The example dataset attached.

    Thank you.


    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input int year str18 country byte crisis float loggdp
    2010 "Argentina"          1 1.4875462
    2011 "Argentina"          0 1.4915873
    2012 "Argentina"          1 1.4933988
    2013 "Argentina"          1 1.4953402
    2014 "Argentina"          1 1.4971235
    2015 "Argentina"          0 1.4933127
    2016 "Argentina"          0  1.494806
    2017 "Argentina"          0  1.485393
    2018 "Argentina"          1 1.4798278
    2010 "Austria"            0  1.499721
    2011 "Austria"            0 1.4997633
    2012 "Austria"            0 1.4997697
    2013 "Austria"            1  1.499822
    2014 "Austria"            0 1.4999533
    2015 "Austria"            0 1.4999458
    2016 "Austria"            0 1.4999447
    2017 "Austria"            0 1.4999433
    2018 "Austria"            0 1.4999447
    2010 "Brazil"             0 1.4243143
    2011 "Brazil"             0 1.4236982
    2012 "Brazil"             0 1.4281896
    2013 "Brazil"             1 1.4218334
    2014 "Brazil"             0 1.4249254
    2015 "Brazil"             1 1.4411718
    2016 "Brazil"             0  1.463491
    2017 "Brazil"             0 1.4621078
    2018 "Brazil"             0  1.459924
    2010 "Dominican Republic" 1 1.4371136
    2011 "Dominican Republic" 0 1.4373026
    2012 "Dominican Republic" 0 1.4593494
    2013 "Dominican Republic" 0 1.4698063
    2014 "Dominican Republic" 0  1.472264
    2015 "Dominican Republic" 0  1.477959
    2016 "Dominican Republic" 1 1.4796697
    2017 "Dominican Republic" 0  1.479243
    2018 "Dominican Republic" 0 1.4438057
    2010 "Ethiopia"           0      1.48
    2011 "Ethiopia"           0      .785
    2012 "Ethiopia"           0      1.08
    2013 "Ethiopia"           0      .715
    2014 "Ethiopia"           1      1.08
    2015 "Ethiopia"           0      1.28
    2016 "Ethiopia"           0       .78
    2017 "Ethiopia"           0      1.35
    2018 "Ethiopia"           0      35.5
    2010 "Gambia"             1 1.4736544
    2011 "Gambia"             0 1.4903766
    2012 "Gambia"             1 1.4713308
    2013 "Gambia"             0 1.4311203
    2014 "Gambia"             0  1.421347
    2015 "Gambia"             1 1.3998796
    2016 "Gambia"             0 1.1941377
    2017 "Gambia"             1  1.219466
    2018 "Gambia"             0  1.208385
    2010 "Kenya"              0  1.412585
    2011 "Kenya"              0  1.408473
    2012 "Kenya"              0  1.443087
    2013 "Kenya"              0  1.447311
    2014 "Kenya"              1 1.4678593
    2015 "Kenya"              1 1.4575927
    2016 "Kenya"              0  1.414596
    2017 "Kenya"              0  1.425446
    2018 "Kenya"              0  1.437257
    2010 "Kyrgyz Republic"    0  1.477767
    2011 "Kyrgyz Republic"    0 1.4195933
    2012 "Kyrgyz Republic"    0  1.411935
    2013 "Kyrgyz Republic"    1 1.4326514
    2014 "Kyrgyz Republic"    0 1.3464007
    2015 "Kyrgyz Republic"    0 1.3087792
    2016 "Kyrgyz Republic"    0  1.444839
    2017 "Kyrgyz Republic"    0 1.4339454
    2018 "Kyrgyz Republic"    1  1.437184
    2010 "Lebanon"            0 1.4883842
    2011 "Lebanon"            0 1.4666675
    2012 "Lebanon"            0  1.470216
    2013 "Lebanon"            0 1.4735326
    2014 "Lebanon"            1 1.4736426
    2015 "Lebanon"            1 1.4731468
    2016 "Lebanon"            0 1.4751496
    2017 "Lebanon"            0 1.4806542
    2018 "Lebanon"            0 1.4959004
    2010 "Liberia"            1  1.492647
    2011 "Liberia"            0  1.492153
    2012 "Liberia"            0 1.4928873
    2013 "Liberia"            0  1.492431
    2014 "Liberia"            1 1.4945573
    2015 "Liberia"            0  1.492199
    2016 "Liberia"            0  1.496289
    2017 "Liberia"            1   1.49454
    2018 "Liberia"            0  1.494272
    end

  • #2
    The crises years do not coincide across countries. So aggregating the data is therefore not straightforward without having to make some probably unreasonable assumptions. You can have a graph matrix depicting each country separately.

    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input int year str18 country byte crisis float loggdp
    2010 "Argentina"          1 1.4875462
    2011 "Argentina"          0 1.4915873
    2012 "Argentina"          1 1.4933988
    2013 "Argentina"          1 1.4953402
    2014 "Argentina"          1 1.4971235
    2015 "Argentina"          0 1.4933127
    2016 "Argentina"          0  1.494806
    2017 "Argentina"          0  1.485393
    2018 "Argentina"          1 1.4798278
    2010 "Austria"            0  1.499721
    2011 "Austria"            0 1.4997633
    2012 "Austria"            0 1.4997697
    2013 "Austria"            1  1.499822
    2014 "Austria"            0 1.4999533
    2015 "Austria"            0 1.4999458
    2016 "Austria"            0 1.4999447
    2017 "Austria"            0 1.4999433
    2018 "Austria"            0 1.4999447
    2010 "Brazil"             0 1.4243143
    2011 "Brazil"             0 1.4236982
    2012 "Brazil"             0 1.4281896
    2013 "Brazil"             1 1.4218334
    2014 "Brazil"             0 1.4249254
    2015 "Brazil"             1 1.4411718
    2016 "Brazil"             0  1.463491
    2017 "Brazil"             0 1.4621078
    2018 "Brazil"             0  1.459924
    2010 "Dominican Republic" 1 1.4371136
    2011 "Dominican Republic" 0 1.4373026
    2012 "Dominican Republic" 0 1.4593494
    2013 "Dominican Republic" 0 1.4698063
    2014 "Dominican Republic" 0  1.472264
    2015 "Dominican Republic" 0  1.477959
    2016 "Dominican Republic" 1 1.4796697
    2017 "Dominican Republic" 0  1.479243
    2018 "Dominican Republic" 0 1.4438057
    2010 "Ethiopia"           0      1.48
    2011 "Ethiopia"           0      .785
    2012 "Ethiopia"           0      1.08
    2013 "Ethiopia"           0      .715
    2014 "Ethiopia"           1      1.08
    2015 "Ethiopia"           0      1.28
    2016 "Ethiopia"           0       .78
    2017 "Ethiopia"           0      1.35
    2018 "Ethiopia"           0      35.5
    2010 "Gambia"             1 1.4736544
    2011 "Gambia"             0 1.4903766
    2012 "Gambia"             1 1.4713308
    2013 "Gambia"             0 1.4311203
    2014 "Gambia"             0  1.421347
    2015 "Gambia"             1 1.3998796
    2016 "Gambia"             0 1.1941377
    2017 "Gambia"             1  1.219466
    2018 "Gambia"             0  1.208385
    2010 "Kenya"              0  1.412585
    2011 "Kenya"              0  1.408473
    2012 "Kenya"              0  1.443087
    2013 "Kenya"              0  1.447311
    2014 "Kenya"              1 1.4678593
    2015 "Kenya"              1 1.4575927
    2016 "Kenya"              0  1.414596
    2017 "Kenya"              0  1.425446
    2018 "Kenya"              0  1.437257
    2010 "Kyrgyz Republic"    0  1.477767
    2011 "Kyrgyz Republic"    0 1.4195933
    2012 "Kyrgyz Republic"    0  1.411935
    2013 "Kyrgyz Republic"    1 1.4326514
    2014 "Kyrgyz Republic"    0 1.3464007
    2015 "Kyrgyz Republic"    0 1.3087792
    2016 "Kyrgyz Republic"    0  1.444839
    2017 "Kyrgyz Republic"    0 1.4339454
    2018 "Kyrgyz Republic"    1  1.437184
    2010 "Lebanon"            0 1.4883842
    2011 "Lebanon"            0 1.4666675
    2012 "Lebanon"            0  1.470216
    2013 "Lebanon"            0 1.4735326
    2014 "Lebanon"            1 1.4736426
    2015 "Lebanon"            1 1.4731468
    2016 "Lebanon"            0 1.4751496
    2017 "Lebanon"            0 1.4806542
    2018 "Lebanon"            0 1.4959004
    2010 "Liberia"            1  1.492647
    2011 "Liberia"            0  1.492153
    2012 "Liberia"            0 1.4928873
    2013 "Liberia"            0  1.492431
    2014 "Liberia"            1 1.4945573
    2015 "Liberia"            0  1.492199
    2016 "Liberia"            0  1.496289
    2017 "Liberia"            1   1.49454
    2018 "Liberia"            0  1.494272
    end
    
    encode country, gen(country2)
    gen year2= year-2000
    bys country2: egen max= max(loggdp)
    xtset country2 year2
    xtline loggdp, byopts(note("") yrescale ixaxes) addplot(dropline max year2 if crisis, msy(none)) ///
    plotregion(margin(zero)) xtitle("") leg(order(2 "Crisis"))
    Click image for larger version

Name:	Graph.png
Views:	1
Size:	63.9 KB
ID:	1745596

    Last edited by Andrew Musau; 05 Mar 2024, 07:51.

    Comment


    • #3
      Dear Andrew,

      Thank you for your response and advice.

      Instead, I would like to illustrate how GDP behaves around crisis periods such pre-crisis, crisis, and post-crisis periods (-4, -3, -2, -1, 0, 1, 2, 3, 4)

      Please find the attached example for your reference.

      I would greatly appreciate your assistance in creating the code for this graph.

      Thank You.

      Click image for larger version

Name:	Screenshot 2024-03-04 193614.png
Views:	1
Size:	20.4 KB
ID:	1745692


      Comment


      • #4
        I already gave my reasons in #2 why I think that this won't be possible with the data that you have. Others having an interest in the question and a different opinion will continue the thread.

        Comment

        Working...
        X