Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Estimating Dynamic Panel Data with different time periods in DV and EV's

    Dear Statalist,

    I have dynamic panel data with N = 30 over 192 months (16 years), which means small N and large T. I would like to estimate a DV that is monthly, using three annual lags of the DV (and the same for all other explanatory and control variables). The reason is that if I use monthly lags of the DV spanning three years, I would have to estimate models with very large numbers of regressors - on the other hand if the DV is annual too, then the number of observations is not large enough and I do not realize the full potential of the data, which is monthly.

    1) Is this feasible from an econometrical perspective?
    2) What kinds of models would be suitable?

    Thanks in advance for any help or advice,
    Fabian


  • #2
    Code:
    Dynamic panel-data estimation                   Number of obs     =      3,663
    Group variable: cat_company                     Number of groups  =         30
    Time variable: cat_year_m~h
                                                    Obs per group:
                                                                  min =          6
                                                                  avg =      122.1
                                                                  max =        158
    
    Number of instruments =    185                  Wald chi2(65)     =    1451.67
                                                    Prob > chi2       =     0.0000
    One-step results
    ------------------------------------------------------------------------------------------------
                          freq_neg | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -------------------------------+----------------------------------------------------------------
                          freq_neg |
                               L1. |  -.0538829   .0259616    -2.08   0.038    -.1047668    -.002999
                               L2. |  -.3202612    .025061   -12.78   0.000    -.3693799   -.2711426
                               L3. |   -.356995   .0290229   -12.30   0.000     -.413879   -.3001111
                               L4. |  -.5712165    .031787   -17.97   0.000    -.6335179   -.5089151
                               L5. |  -.2679029   .0313788    -8.54   0.000    -.3294043   -.2064016
                               L6. |  -.3501498   .0299518   -11.69   0.000    -.4088543   -.2914454
                               L7. |  -.3858191   .0288397   -13.38   0.000    -.4423438   -.3292944
                               L8. |  -.1949953   .0314511    -6.20   0.000    -.2566384   -.1333523
                               L9. |  -.2165878   .0306888    -7.06   0.000    -.2767367   -.1564389
                              L10. |   -.254612   .0308063    -8.26   0.000    -.3149913   -.1942327
                              L11. |  -.1505806    .038828    -3.88   0.000    -.2266822   -.0744791
                              L12. |  -.2738982   .0356228    -7.69   0.000    -.3437177   -.2040788
                              L13. |   3.437116   .5935349     5.79   0.000     2.273809    4.600423
                              L14. |   3.365919   .5935252     5.67   0.000     2.202631    4.529207
                              L15. |   3.530314   .5940444     5.94   0.000     2.366008    4.694619
                              L16. |   3.517882    .592144     5.94   0.000     2.357301    4.678462
                              L17. |   3.471721   .5912702     5.87   0.000     2.312853    4.630589
                              L18. |   3.520242   .5936442     5.93   0.000     2.356721    4.683764
                              L19. |   3.383958   .5930395     5.71   0.000     2.221622    4.546294
                              L20. |   3.410956   .5942216     5.74   0.000     2.246303    4.575609
                              L21. |    3.48619   .5903409     5.91   0.000     2.329143    4.643237
                              L22. |   3.349951   .5928484     5.65   0.000      2.18799    4.511913
                              L23. |   3.515272   .5916337     5.94   0.000     2.355691    4.674852
                              L24. |   3.525092   .5970339     5.90   0.000     2.354928    4.695257
                              L25. |    2.00257   .5885878     3.40   0.001     .8489592    3.156181
                              L26. |   1.740636   .5879331     2.96   0.003     .5883078    2.892963
                              L27. |   1.886602   .5894676     3.20   0.001     .7312669    3.041938
                              L28. |   1.907984   .5870581     3.25   0.001      .757371    3.058596
                              L29. |   1.944944   .5871373     3.31   0.001     .7941764    3.095712
                              L30. |   1.801181   .5879795     3.06   0.002     .6487626      2.9536
                              L31. |   1.793904   .5832464     3.08   0.002     .6507618    2.937046
                              L32. |   1.915111   .5814324     3.29   0.001     .7755241    3.054697
                              L33. |   1.806886   .5795266     3.12   0.002     .6710343    2.942737
                              L34. |   1.965477    .582878     3.37   0.001     .8230569    3.107897
                              L35. |   1.829791   .5806689     3.15   0.002     .6917013    2.967881
                              L36. |   1.789048   .5852408     3.06   0.002      .641997    2.936099
                                   |
    freq_neg_13_to_24_months_prior |  -3.406737   .5916904    -5.76   0.000    -4.566429   -2.247045
    freq_neg_25_to_36_months_prior |  -1.775813   .5794399    -3.06   0.002    -2.911494   -.6401313
               freq_pos_tot_4_1_12 |   .0043417   .0200124     0.22   0.828    -.0348819    .0435652
              freq_pos_tot_4_13_24 |  -.0295224   .0204835    -1.44   0.150    -.0696692    .0106245
              freq_pos_tot_4_25_36 |  -.0348383   .0211783    -1.64   0.100     -.076347    .0066705
              freq_neut_tot_4_1_12 |   .1696598   .0769817     2.20   0.028     .0187784    .3205411
             freq_neut_tot_4_13_24 |  -.1639081   .0857059    -1.91   0.056    -.3318885    .0040723
             freq_neut_tot_4_25_36 |   .0303198   .0738768     0.41   0.682    -.1144761    .1751158
                         PR_Comp_1 |   .2281865   .0554336     4.12   0.000     .1195387    .3368344
                         PR_Comp_2 |    .142109   .0592998     2.40   0.017     .0258836    .2583344
                         PR_Comp_3 |    .065443   .0638567     1.02   0.305    -.0597138    .1905998
                    MSCI_ESG_ENV_1 |   .0053786   .2036366     0.03   0.979    -.3937419     .404499
                    MSCI_ESG_ENV_2 |   .1874652   .1861139     1.01   0.314    -.1773114    .5522417
                    MSCI_ESG_ENV_3 |   .1916222   .2348751     0.82   0.415    -.2687247     .651969
             assets_total_usd_cs_s |  -.0063877   .0037729    -1.69   0.090    -.0137824     .001007
          assets_total_usd_cs_2y_s |   .0050705   .0040571     1.25   0.211    -.0028813    .0130223
          assets_total_usd_cs_3y_s |  -.0119312   .0037577    -3.18   0.001    -.0192961   -.0045664
                    net_sales_cs_s |   .0949077   .0163251     5.81   0.000     .0629111    .1269042
                 net_sales_cs_2y_s |  -.2047092   .0167555   -12.22   0.000    -.2375494   -.1718691
                 net_sales_cs_3y_s |   .2728473   .0236579    11.53   0.000     .2264787    .3192158
                    cash_flow_cs_s |   .0112143   .1306158     0.09   0.932     -.244788    .2672165
                 cash_flow_cs_2y_s |  -.0188446   .1583632    -0.12   0.905    -.3292309    .2915417
                 cash_flow_cs_3y_s |  -.0679756   .1560878    -0.44   0.663    -.3739021    .2379509
                          roa_cs_s |  -.1232024   .3560136    -0.35   0.729    -.8209763    .5745715
                       roa_cs_2y_s |   .1283978   .3431579     0.37   0.708    -.5441793    .8009748
                       roa_cs_3y_s |   .1253875   .2146592     0.58   0.559    -.2953367    .5461118
          tot_debt_tot_assets_cs_s |  -.0890765   .0888833    -1.00   0.316    -.2632844    .0851315
       tot_debt_tot_assets_cs_2y_s |    -.00432   .0916886    -0.05   0.962    -.1840263    .1753864
       tot_debt_tot_assets_cs_3y_s |    .029038   .0755197     0.38   0.701    -.1189778    .1770538
                             _cons |  -4.573229   3.787587    -1.21   0.227    -11.99676    2.850306
    ------------------------------------------------------------------------------------------------
    Instruments for differenced equation
            GMM-type: L(2/2).freq_neg
            Standard: D.freq_pos_tot_4_1_12 D.freq_pos_tot_4_13_24 D.freq_pos_tot_4_25_36
                      D.freq_neut_tot_4_1_12 D.freq_neut_tot_4_13_24 D.freq_neut_tot_4_25_36
                      D.PR_Comp_1 D.PR_Comp_2 D.PR_Comp_3 D.MSCI_ESG_ENV_1 D.MSCI_ESG_ENV_2
                      D.MSCI_ESG_ENV_3 D.assets_total_usd_cs_s D.assets_total_usd_cs_2y_s
                      D.assets_total_usd_cs_3y_s D.net_sales_cs_s D.net_sales_cs_2y_s
                      D.net_sales_cs_3y_s D.cash_flow_cs_s D.cash_flow_cs_2y_s D.cash_flow_cs_3y_s
                      D.roa_cs_s D.roa_cs_2y_s D.roa_cs_3y_s D.tot_debt_tot_assets_cs_s
                      D.tot_debt_tot_assets_cs_2y_s D.tot_debt_tot_assets_cs_3y_s
    Instruments for level equation
            Standard: _cons
    
    . estat sargan
    Sargan test of overidentifying restrictions
    H0: Overidentifying restrictions are valid
    
            chi2(119)    =  1057.944
            Prob > chi2  =    0.0000

    Comment

    Working...
    X