I am trying to learn the application of xtgee to see if it is of any use in my research, and I am using Agresti Categorical Data Analysis 3rd Edition as my reference. Using the data from his Table 12.5 I get the following results:
Agresti reports the results with a single coefficient for time (0.48) and the time#drug (1.01) interaction which is interpreted as the new drug increasing the slope by 1.01 giving a faster rate of improvement.
My problem is how do I get a single coefficient rather than the individual main effects interactions or do I not need to worry about it. If so how do I interpret the results?
This is a subset of 100 results from the Agresti data which has 1020 results.
Thank you,
Julie
------------------ copy up to and including the previous line ------------------
Listed 100 out of 1020 observations
Code:
. xtgee depression i.diagnose i.time##i.drug, family(binomial) link(logit) corr(exc) nolog GEE population-averaged model Number of obs = 1,020 Group variable: id Number of groups = 340 Family: Binomial Obs per group: Link: Logit min = 3 Correlation: exchangeable avg = 3.0 max = 3 Wald chi2(6) = 176.31 Scale parameter = 1 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ depression | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- diagnose | mild | 0.000 (base) severe | -1.312 0.146 -9.00 0.000 -1.597 -1.026 | time | 0 | 0.000 (base) 1 | 0.339 0.229 1.48 0.139 -0.110 0.789 2 | 0.960 0.229 4.19 0.000 0.511 1.410 | drug | standard | 0.000 (base) new | -0.055 0.241 -0.23 0.820 -0.527 0.418 | time#drug | 1#new | 1.002 0.337 2.97 0.003 0.341 1.662 2#new | 2.097 0.390 5.38 0.000 1.333 2.862 | _cons | 0.021 0.178 0.12 0.906 -0.327 0.369 ------------------------------------------------------------------------------
My problem is how do I get a single coefficient rather than the individual main effects interactions or do I not need to worry about it. If so how do I interpret the results?
This is a subset of 100 results from the Agresti data which has 1020 results.
Thank you,
Julie
Code:
* Example generated by -dataex-. For more info, type help dataex clear input byte(diagnose drug) int id byte(time depression) double diag byte select 1 1 2 0 1 0 1 1 1 3 0 1 0 1 1 1 8 1 1 0 1 1 1 9 2 1 0 1 1 2 17 1 1 0 1 1 2 25 2 1 0 1 1 2 26 2 1 0 1 1 2 28 1 1 0 1 1 2 28 2 1 0 1 1 2 29 0 1 0 1 1 2 29 2 1 0 1 1 2 31 0 1 0 1 1 2 42 1 1 0 1 1 2 42 2 1 0 1 1 2 43 1 1 0 1 1 2 44 2 1 0 1 2 2 52 0 1 1 1 2 2 53 1 1 1 1 1 1 60 1 1 0 1 1 1 61 2 0 0 1 1 1 64 1 1 0 1 1 1 80 1 0 0 1 1 1 82 2 1 0 1 2 1 89 2 1 1 1 2 1 90 2 1 1 1 2 1 96 2 1 1 1 2 2 97 2 1 1 1 1 1 102 0 1 0 1 2 1 109 0 1 1 1 1 1 117 0 0 0 1 1 1 119 1 1 0 1 1 1 121 0 0 0 1 1 1 129 0 0 0 1 1 2 131 0 0 0 1 1 2 133 2 1 0 1 1 2 134 1 1 0 1 1 2 137 1 1 0 1 1 2 139 1 1 0 1 1 2 147 1 1 0 1 1 2 150 1 1 0 1 2 1 152 0 0 1 1 2 1 156 0 0 1 1 2 1 158 0 0 1 1 2 1 158 2 1 1 1 2 2 165 1 1 1 1 2 2 166 1 1 1 1 2 2 168 2 1 1 1 2 2 169 2 1 1 1 2 2 172 0 0 1 1 2 2 172 2 1 1 1 2 2 186 2 1 1 1 2 1 199 1 1 1 1 2 1 202 2 0 1 1 2 1 206 0 0 1 1 2 1 208 0 0 1 1 2 1 211 2 0 1 1 2 2 215 0 0 1 1 2 2 217 2 0 1 1 1 1 220 0 0 0 1 1 1 222 1 0 0 1 1 1 225 2 1 0 1 1 1 226 2 1 0 1 1 2 236 0 0 0 1 1 2 237 2 1 0 1 1 2 239 2 1 0 1 1 2 240 2 1 0 1 1 2 241 0 0 0 1 2 1 246 1 0 1 1 2 1 247 2 1 1 1 2 1 260 0 0 1 1 2 1 260 2 1 1 1 2 1 263 0 0 1 1 2 1 266 1 0 1 1 2 2 269 1 0 1 1 2 2 271 0 0 1 1 2 2 274 0 0 1 1 2 2 276 0 0 1 1 2 2 277 1 0 1 1 2 2 280 2 1 1 1 2 2 282 1 0 1 1 2 2 284 0 0 1 1 2 2 284 2 1 1 1 2 2 286 0 0 1 1 2 2 288 2 1 1 1 2 2 290 2 1 1 1 2 2 292 0 0 1 1 2 2 294 0 0 1 1 1 1 305 1 0 0 1 1 1 306 0 0 0 1 2 1 307 0 0 1 1 2 1 308 0 0 1 1 2 1 319 2 0 1 1 2 1 321 1 0 1 1 2 1 322 2 0 1 1 2 1 324 1 0 1 1 2 1 331 0 0 1 1 2 1 334 0 0 1 1 2 1 334 1 0 1 1 2 2 335 1 0 1 1 2 2 337 0 0 1 1 end label values diagnose diagnose label def diagnose 1 "mild", modify label def diagnose 2 "severe", modify label values drug drug label def drug 1 "standard", modify label def drug 2 "new", modify
Listed 100 out of 1020 observations