Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Main effect vs. interaction in multi-way fixed effects

    Hello All,


    I am estimating a multi-way fixed effects model.

    I want to examine how macro level factors such as infrastructure, regulation quality and labor force, impact innovation differently across multiple regions.



    For example, if I have a model where the main effect is infrastructure investment and the interaction is - infrastructure investment x OECD region- what does it mean if only the interaction is significant versus if both main effect and interaction are significant?

    Should we look at the significance of the the interaction only or both the main effect and interaction?

    Does it create a better model if the main effect is dropped when an interaction is added?


    Example with main effects and interaction:


    Code:
    reghdfe Innovation ICT_AnnualInvestment KnowledgeCapitalFem LaborForceParticipFem RegulatoryQualityEstimate DomesticCredit DomesticMarketScale FDINetOutflow_prcntGDP i.OECD_nonOECD#(c.ICT_AnnualInvestment), absorb (ccode year) cluster (ccode)

    Code:
    HDFE Linear regression                            Number of obs   =        374
    Absorbing 2 HDFE groups                           F(   8,     81) =       2.05
    Statistics robust to heteroskedasticity           Prob > F        =     0.0509
                                                      R-squared       =     0.9691
                                                      Adj R-squared   =     0.9589
                                                      Within R-sq.    =     0.0632
    Number of clusters (ccode)   =         82         Root MSE        =     4.4788
    
                                                            (Std. err. adjusted for 82 clusters in ccode)
    -----------------------------------------------------------------------------------------------------
                                        |               Robust
                             Innovation | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    ------------------------------------+----------------------------------------------------------------
                   ICT_AnnualInvestment |  -1.12e-09   4.26e-10    -2.64   0.010    -1.97e-09   -2.76e-10
                    KnowledgeCapitalFem |   .0392724   .0197721     1.99   0.050     -.000068    .0786128
                  LaborForceParticipFem |   .2695543   .2103904     1.28   0.204    -.1490566    .6881651
              RegulatoryQualityEstimate |    4.50043   5.835112     0.77   0.443    -7.109613    16.11047
                         DomesticCredit |   .0798555   .0662213     1.21   0.231    -.0519041     .211615
                    DomesticMarketScale |   3.55e-13   2.40e-12     0.15   0.883    -4.41e-12    5.12e-12
                 FDINetOutflow_prcntGDP |  -.0041192   .0041898    -0.98   0.328    -.0124555    .0042171
                                        |
    OECD_nonOECD#c.ICT_AnnualInvestment |
                               NonOECD  |   1.19e-09   5.65e-10     2.11   0.038     6.62e-11    2.31e-09
                                        |
                                  _cons |   13.19419   15.29075     0.86   0.391     -17.2296    43.61797
    -----------------------------------------------------------------------------------------------------
    
    Absorbed degrees of freedom:
    -----------------------------------------------------+
     Absorbed FE | Categories  - Redundant  = Num. Coefs |
    -------------+---------------------------------------|
           ccode |        82          82           0    *|
            year |         5           1           4     |
    -----------------------------------------------------+
    * = FE nested within cluster; treated as redundant for DoF computation



    Example only with the interaction:

    Code:
    reghdfe Innovation KnowledgeCapitalFem LaborForceParticipFem RegulatoryQualityEstimate DomesticCredit DomesticMarketScale FDINetOutflow_prcntGDP i.OECD_nonOECD#(c.ICT_AnnualInvestment), absorb (ccode year) cluster (ccode)

    Code:
    HDFE Linear regression                            Number of obs   =        374
    Absorbing 2 HDFE groups                           F(   8,     81) =       2.05
    Statistics robust to heteroskedasticity           Prob > F        =     0.0509
                                                      R-squared       =     0.9691
                                                      Adj R-squared   =     0.9589
                                                      Within R-sq.    =     0.0632
    Number of clusters (ccode)   =         82         Root MSE        =     4.4788
    
                                                            (Std. err. adjusted for 82 clusters in ccode)
    -----------------------------------------------------------------------------------------------------
                                        |               Robust
                             Innovation | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    ------------------------------------+----------------------------------------------------------------
                    KnowledgeCapitalFem |   .0392724   .0197721     1.99   0.050     -.000068    .0786128
                  LaborForceParticipFem |   .2695543   .2103904     1.28   0.204    -.1490566    .6881651
              RegulatoryQualityEstimate |    4.50043   5.835112     0.77   0.443    -7.109613    16.11047
                         DomesticCredit |   .0798555   .0662213     1.21   0.231    -.0519041     .211615
                    DomesticMarketScale |   3.55e-13   2.40e-12     0.15   0.883    -4.41e-12    5.12e-12
                 FDINetOutflow_prcntGDP |  -.0041192   .0041898    -0.98   0.328    -.0124555    .0042171
                                        |
    OECD_nonOECD#c.ICT_AnnualInvestment |
                                  OECD  |  -1.12e-09   4.26e-10    -2.64   0.010    -1.97e-09   -2.76e-10
                               NonOECD  |   6.68e-11   1.73e-10     0.39   0.700    -2.77e-10    4.11e-10
                                        |
                                  _cons |   13.19419   15.29075     0.86   0.391     -17.2296    43.61797
    -----------------------------------------------------------------------------------------------------
    
    Absorbed degrees of freedom:
    -----------------------------------------------------+
     Absorbed FE | Categories  - Redundant  = Num. Coefs |
    -------------+---------------------------------------|
           ccode |        82          82           0    *|
            year |         5           1           4     |
    -----------------------------------------------------+
    * = FE nested within cluster; treated as redundant for DoF computation



  • #2
    The second model does not include ICT_AnnualInvestment, so not helpful.

    In the first model, the IC_AnnualInvestment coefficient measures the effect for OECD (assuming OECD_nonOECD means not OECD). The interaction is the difference of the effect of ICTInv for NonOECD countries, so the effect for that group is the sum of the coefficients.

    You have a NonOECD variable, so it's not exactly clear to me what OECD_nonOECD is.

    Comment


    • #3
      Many thanks for your help.

      OECD_nonOECD is a dummy that has two levels (1-OECD and 2-non-OECD).



      Comment


      • #4
        I'd just use the NonOECD dummy for consistency, and it will permit you to use margins.

        reg y ICT_AnnualInvestment c.NonOECD#c.ICT_AnnualInvestment or reg y i.NonOECD#c.ICT_AnnualInvestment

        I prefer the former since it provides a direct test of equality.

        The latter will given you the coefficients for OECD and NonOECD directly, but then you'll have to test the equality.

        Comment


        • #5
          Many thanks!


          Do you suggest to use margins after plain reg with one explanatory variable? Or reghdfe with all the x variables in the original model?



          Former command


          Code:
          . reg Innovation ICT_AnnualInvestinTelecomServ c.NonOECD#c.ICT_AnnualInvestinTelecomServ
          
          
          
          
                Source |       SS           df       MS      Number of obs   =       575
          
          -------------+----------------------------------   F(2, 572)       =    115.42
          
                 Model |  97193.0159         2  48596.5079   Prob > F        =    0.0000
          
              Residual |  240834.063       572  421.038572   R-squared       =    0.2875
          
          -------------+----------------------------------   Adj R-squared   =    0.2850
          
                 Total |  338027.079       574   588.89735   Root MSE        =    20.519
          
          
          
          
          -------------------------------------------------------------------------------------------------
          
                               Innovation | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
          
          --------------------------------+----------------------------------------------------------------
          
            ICT_AnnualInvestinTelecomServ |   2.280483   .1640094    13.90   0.000     1.958349    2.602617
          
                                          |
          
                                c.NonOECD#|
          
          c.ICT_AnnualInvestinTelecomServ |  -1.203503   .0804845   -14.95   0.000    -1.361585   -1.045422
          
                                          |
          
                                    _cons |   27.30575   1.316073    20.75   0.000     24.72083    29.89068
          
          -------------------------------------------------------------------------------------------------
          
          
          
          
          . 
          
          margins, at (ICT_AnnualInvestinTelecomServ =(0(25)300) NonOECD==(1 2))
          
          
          
          
          . marginsplot


          Click image for larger version

Name:	Reg DV IV.png
Views:	1
Size:	255.6 KB
ID:	1744889








          Former command all variables


          Code:
          . reg Innovation ICT_AnnualInvestinTelecomServ  KnowledgeCapitalFem LaborForceParticipFem RegulatoryQuali
          
          > tyEstimate DomesticCredit DomesticMarketScale FDINetOutflow_prcntGDP c.NonOECD#c.ICT_AnnualInvestinTele
          
          > comServ
          
          
          
          
                Source |       SS           df       MS      Number of obs   =       364
          
          -------------+----------------------------------   F(8, 355)       =     46.58
          
                 Model |   90933.509         8  11366.6886   Prob > F        =    0.0000
          
              Residual |  86631.7253       355  244.033029   R-squared       =    0.5121
          
          -------------+----------------------------------   Adj R-squared   =    0.5011
          
                 Total |  177565.234       363  489.160425   Root MSE        =    15.622
          
          
          
          
          -------------------------------------------------------------------------------------------------
          
                               Innovation | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
          
          --------------------------------+----------------------------------------------------------------
          
            ICT_AnnualInvestinTelecomServ |   .9409816   .2082645     4.52   0.000     .5313944    1.350569
          
                      KnowledgeCapitalFem |   .2201895   .0361564     6.09   0.000     .1490818    .2912971
          
                    LaborForceParticipFem |  -.0173902   .0645444    -0.27   0.788    -.1443277    .1095474
          
                RegulatoryQualityEstimate |    7.29829    1.55817     4.68   0.000     4.233885     10.3627
          
                           DomesticCredit |   .0317696   .0166748     1.91   0.058    -.0010242    .0645634
          
                      DomesticMarketScale |   3.52e-12   6.38e-13     5.52   0.000     2.27e-12    4.77e-12
          
                   FDINetOutflow_prcntGDP |   -.019732   .0374924    -0.53   0.599    -.0934672    .0540033
          
                                          |
          
                                c.NonOECD#|
          
          c.ICT_AnnualInvestinTelecomServ |  -.5260217   .1042799    -5.04   0.000    -.7311056   -.3209377
          
                                          |
          
                                    _cons |   24.28462    4.26382     5.70   0.000      15.8991    32.67014
          
          -------------------------------------------------------------------------------------------------
          
          
          
          
          . margins, at (ICT_AnnualInvestinTelecomServ =(0(25)300) NonOECD==(1 2))
          
          
          
          
          . marginsplot



          Click image for larger version

Name:	Reg all variables.png
Views:	1
Size:	267.0 KB
ID:	1744888

          Comment


          • #6
            you need NonOECD as a variable too. both lines should be positively sloped.

            here's a mickey mouse model to show the difference.

            Code:
            clear all
            
            sysuse auto, clear
            
            reg mpg headroom foreign c.foreign#c.headroom
            margins, at(headroom = (1.5(.5)5)) over(foreign)
            marginsplot
            
            reg mpg headroom c.foreign#c.headroom
            margins, at(headroom = (1.5(.5)5)) over(foreign)
            marginsplot

            Comment


            • #7
              Thanks for pointing this out.

              Code:
              . reg Innovation KnowledgeCapitalFem NonOECD c.NonOECD#c.KnowledgeCapitalFem
              
                    Source |       SS           df       MS      Number of obs   =       550
              -------------+----------------------------------   F(3, 546)       =    117.97
                     Model |  112998.497         3  37666.1658   Prob > F        =    0.0000
                  Residual |  174323.934       546  319.274604   R-squared       =    0.3933
              -------------+----------------------------------   Adj R-squared   =    0.3899
                     Total |  287322.431       549  523.355977   Root MSE        =    17.868
              
              -------------------------------------------------------------------------------------------------
                                   Innovation | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
              --------------------------------+----------------------------------------------------------------
                          KnowledgeCapitalFem |  -.3798399   .1439433    -2.64   0.009    -.6625902   -.0970895
                                      NonOECD |  -36.78169   2.931203   -12.55   0.000    -42.53951   -31.02388
                                              |
              c.NonOECD#c.KnowledgeCapitalFem |   .3287951   .0786167     4.18   0.000     .1743668    .4832234
                                              |
                                        _cons |   93.49115   5.521899    16.93   0.000     82.64438    104.3379
              -------------------------------------------------------------------------------------------------
              
              . margins, at (KnowledgeCapitalFem=(0(5)71.2) NonOECD==(1 2))
              Click image for larger version

Name:	KnowledgeCapFam.png
Views:	1
Size:	260.6 KB
ID:	1745151




              Code:
              . reg Innovation KnowledgeCapitalFem ICT_AnnualInvestment LaborForceParticipFem RegulatoryQualityEstimate Do
              > mesticCredit DomesticMarketScale FDINetOutflow_prcntGDP NonOECD c.NonOECD#c.KnowledgeCapitalFem
              
                    Source |       SS           df       MS      Number of obs   =       378
              -------------+----------------------------------   F(9, 368)       =     39.41
                     Model |  90975.9278         9  10108.4364   Prob > F        =    0.0000
                  Residual |  94397.5102       368  256.514973   R-squared       =    0.4908
              -------------+----------------------------------   Adj R-squared   =    0.4783
                     Total |  185373.438       377  491.706732   Root MSE        =    16.016
              
              -------------------------------------------------------------------------------------------------
                                   Innovation | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
              --------------------------------+----------------------------------------------------------------
                          KnowledgeCapitalFem |  -.2113847   .1547938    -1.37   0.173     -.515776    .0930067
                         ICT_AnnualInvestment |   2.45e-10   5.36e-10     0.46   0.648    -8.09e-10    1.30e-09
                        LaborForceParticipFem |   .0406452   .0648221     0.63   0.531     -.086823    .1681134
                    RegulatoryQualityEstimate |   5.042419   1.711027     2.95   0.003     1.677803    8.407035
                               DomesticCredit |   .0285328   .0173172     1.65   0.100    -.0055203    .0625858
                          DomesticMarketScale |   3.00e-12   1.20e-12     2.50   0.013     6.44e-13    5.36e-12
                       FDINetOutflow_prcntGDP |  -.0248731   .0383744    -0.65   0.517    -.1003338    .0505875
                                      NonOECD |  -21.27443   4.340024    -4.90   0.000    -29.80878   -12.74007
                                              |
              c.NonOECD#c.KnowledgeCapitalFem |   .2565829   .0870368     2.95   0.003     .0854311    .4277346
                                              |
                                        _cons |   58.78922   9.282453     6.33   0.000     40.53591    77.04252
              -------------------------------------------------------------------------------------------------
              
              . margins, at (KnowledgeCapitalFem=(0(5)71.2) NonOECD==(1 2))

              Click image for larger version

Name:	KnowledgeCapAllVariables.png
Views:	1
Size:	261.6 KB
ID:	1745152



              It seems the differences between OECD and NonOECD disappear as KnowledgeCapFem increases in the second model.



              I noticed in one journal the common marginsplot included in these types of studies looks different. It has the mean and SD.

              Any commands in Stata to generate this type of marginsplot?

              Click image for larger version

Name:	Example.png
Views:	1
Size:	215.4 KB
ID:	1745153




              Comment


              • #8
                NonOECD needs to be 0/1 not 1/2. For many things it doesn't matter (it doesn't affect marginsplot), but here it is affecting the coefficient on Knowledge... which is confusing.


                Y = aX + bD + cXD
                dY/dX = a + c*D

                With D = 1/2, the c coefficient is correct, but the a coefficient is too large by c. Margins sorts it all out, but you're going to confuse readers with the coefficients (unless you make it explicit NonOECD is 1,2, which most readers would conclude is odd).

                Dummies are 0/1. There could be other problems with 1/2, such as multiplication where you want the 0 to apply or taking means. The mean of NonOECD is not the share of NonOECD sample members (it is 1 + the mean).


                Code:
                sysuse auto, clear
                
                reg mpg headroom foreign c.foreign#c.headroom
                margins, at(headroom = (1.5(.5)5)) over(foreign)
                marginsplot
                
                reg mpg headroom c.foreign#c.headroom
                margins, at(headroom = (1.5(.5)5)) over(foreign)
                marginsplot
                
                g for = foreign + 1
                
                reg mpg headroom for c.for#c.headroom
                margins, at(headroom = (1.5(.5)5)) over(for)
                marginsplot
                
                summ foreign for

                Comment


                • #9
                  Code:
                  
                  . gen NonOECD_redone = 0
                  
                  
                  
                  
                  . replace NonOECD_redone = 1 if NonOECD_name=="NonOECD"
                  
                  (936 real changes made)
                  
                  
                  
                  
                  . tab NonOECD_redone
                  
                  
                  
                  
                  NonOECD_red |
                  
                          one |      Freq.     Percent        Cum.
                  
                  ------------+-----------------------------------
                  
                            0 |        228       19.59       19.59
                  
                            1 |        936       80.41      100.00
                  
                  ------------+-----------------------------------
                  
                        Total |      1,164      100.00
                  
                  
                  
                  
                  . tab NonOECD
                  
                  
                  
                  
                  OECD_nonOEC |
                  
                            D |      Freq.     Percent        Cum.
                  
                  ------------+-----------------------------------
                  
                         OECD |        228       19.59       19.59
                  
                      NonOECD |        936       80.41      100.00
                  
                  ------------+-----------------------------------
                  
                        Total |      1,164      100.00
                  
                  
                  
                  
                  . tab NonOECD_name
                  
                  
                  
                  
                  OECD_nonOEC |
                  
                       D_Name |      Freq.     Percent        Cum.
                  
                  ------------+-----------------------------------
                  
                      NonOECD |        936       80.41       80.41
                  
                         OECD |        228       19.59      100.00
                  
                  ------------+-----------------------------------
                  
                        Total |      1,164      100.00
                  
                  
                  
                  
                  
                  
                  
                  . reg Innovation KnowledgeCapitalFem NonOECD_redone c.NonOECD_redone#c.KnowledgeCapitalFem
                  
                  
                  
                  
                        Source |       SS           df       MS      Number of obs   =       550
                  
                  -------------+----------------------------------   F(3, 546)       =    117.97
                  
                         Model |  112998.497         3  37666.1658   Prob > F        =    0.0000
                  
                      Residual |  174323.934       546  319.274604   R-squared       =    0.3933
                  
                  -------------+----------------------------------   Adj R-squared   =    0.3899
                  
                         Total |  287322.431       549  523.355977   Root MSE        =    17.868
                  
                  
                  
                  
                  --------------------------------------------------------------------------------------------------------
                  
                                              Innovation | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
                  
                  ---------------------------------------+----------------------------------------------------------------
                  
                                     KnowledgeCapitalFem |  -.0510448   .0696158    -0.73   0.464    -.1877923    .0857028
                  
                                          NonOECD_redone |  -36.78169   2.931203   -12.55   0.000    -42.53951   -31.02388
                  
                                                         |
                  
                  c.NonOECD_redone#c.KnowledgeCapitalFem |   .3287951   .0786167     4.18   0.000     .1743668    .4832234
                  
                                                         |
                  
                                                   _cons |   56.70945   2.701815    20.99   0.000     51.40223    62.01668
                  
                  --------------------------------------------------------------------------------------------------------
                  
                  
                  
                  
                  . margins, at (KnowledgeCapitalFem=(0(5)71.2) NonOECD_redone==(0 1))


                  Click image for larger version

Name:	reg.png
Views:	1
Size:	255.8 KB
ID:	1745268






                  Code:
                  reg Innovation KnowledgeCapitalFem ICT_AnnualInvestment LaborForceParticipFem RegulatoryQualityEstimate DomesticCredit DomesticMarketScale 
                  
                  > FDINetOutflow_prcntGDP NonOECD_redone c.NonOECD_redone#c.KnowledgeCapitalFem
                  
                  
                  
                  
                        Source |       SS           df       MS      Number of obs   =       378
                  
                  -------------+----------------------------------   F(9, 368)       =     39.41
                  
                         Model |  90975.9278         9  10108.4364   Prob > F        =    0.0000
                  
                      Residual |  94397.5102       368  256.514973   R-squared       =    0.4908
                  
                  -------------+----------------------------------   Adj R-squared   =    0.4783
                  
                         Total |  185373.438       377  491.706732   Root MSE        =    16.016
                  
                  
                  
                  
                  --------------------------------------------------------------------------------------------------------
                  
                                              Innovation | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
                  
                  ---------------------------------------+----------------------------------------------------------------
                  
                                     KnowledgeCapitalFem |   .0451982   .0732222     0.62   0.537    -.0987882    .1891846
                  
                                    ICT_AnnualInvestment |   2.45e-10   5.36e-10     0.46   0.648    -8.09e-10    1.30e-09
                  
                                   LaborForceParticipFem |   .0406452   .0648221     0.63   0.531     -.086823    .1681134
                  
                               RegulatoryQualityEstimate |   5.042419   1.711027     2.95   0.003     1.677803    8.407035
                  
                                          DomesticCredit |   .0285328   .0173172     1.65   0.100    -.0055203    .0625858
                  
                                     DomesticMarketScale |   3.00e-12   1.20e-12     2.50   0.013     6.44e-13    5.36e-12
                  
                                  FDINetOutflow_prcntGDP |  -.0248731   .0383744    -0.65   0.517    -.1003338    .0505875
                  
                                          NonOECD_redone |  -21.27443   4.340024    -4.90   0.000    -29.80878   -12.74007
                  
                                                         |
                  
                  c.NonOECD_redone#c.KnowledgeCapitalFem |   .2565829   .0870368     2.95   0.003     .0854311    .4277346
                  
                                                         |
                  
                                                   _cons |   37.51479   5.736712     6.54   0.000     26.23394    48.79564
                  
                  --------------------------------------------------------------------------------------------------------
                  
                  margins, at (KnowledgeCapitalFem=(0(5)71.2) NonOECD_redone==(0 1))
                  Click image for larger version

Name:	regallvariables.png
Views:	1
Size:	258.4 KB
ID:	1745269




                  Fixed the dummies. Any thoughts?

                  Comment


                  • #10
                    This looks better. marginsplot is consistent with the coefficients.

                    Comment


                    • #11
                      Thank you for the invaluable advice.

                      Comment


                      • #12
                        You could make the graph legend better by replace NonOECD rather than creating a new variable:

                        replace NonOECD = NonOECD - 1

                        Comment


                        • #13
                          It didn't quite work in transforming the variable to match the original variable.

                          Code:
                          . tab NonOECD
                          
                          OECD_nonOEC |
                                    D |      Freq.     Percent        Cum.
                          ------------+-----------------------------------
                                 OECD |        228       19.59       19.59
                              NonOECD |        936       80.41      100.00
                          ------------+-----------------------------------
                                Total |      1,164      100.00
                          
                          
                          
                          . replace NonOECD = NonOECD - 1
                          (1,164 real changes made)
                          
                          . tab NonOECD
                          
                          OECD_nonOEC |
                                    D |      Freq.     Percent        Cum.
                          ------------+-----------------------------------
                                    0 |        228       19.59       19.59
                                 OECD |        936       80.41      100.00
                          ------------+-----------------------------------
                                Total |      1,164      100.00

                          Comment


                          • #14
                            Worked, just need to reassign labels.

                            Comment


                            • #15
                              I see it now.


                              Code:
                              . replace NonOECD = NonOECD - 1
                              (1,164 real changes made)
                              
                              . tab NonOECD
                              
                              OECD_nonOEC |
                                        D |      Freq.     Percent        Cum.
                              ------------+-----------------------------------
                                        0 |        228       19.59       19.59
                                     OECD |        936       80.41      100.00
                              ------------+-----------------------------------
                                    Total |      1,164      100.00
                              
                              . label define NonOECD 0 "OECD" 1 "NonOECD"
                              . label values    NonOECD NonOECD
                              ​​​​​​​
                              Code:
                               label values NonOECD NonOECD
                              
                              . tab NonOECD
                              
                              OECD_nonOEC |
                                        D |      Freq.     Percent        Cum.
                              ------------+-----------------------------------
                                     OECD |        228       19.59       19.59
                                  NonOECD |        936       80.41      100.00
                              ------------+-----------------------------------
                                    Total |      1,164      100.00
                              
                              . xtset ccode year
                              
                              Panel variable: ccode (strongly balanced)
                               Time variable: year, 2017 to 2022
                                       Delta: 1 unit
                              
                              . reg Innovation KnowledgeCapitalFem ICT_AnnualInvestment LaborForceParticipFem RegulatoryQualityEstimate DomesticCre
                              > dit DomesticMarketScale FDINetOutflow_prcntGDP NonOECD_redone c.NonOECD_redone#c.KnowledgeCapitalFem
                              
                                    Source |       SS           df       MS      Number of obs   =       378
                              -------------+----------------------------------   F(9, 368)       =     39.41
                                     Model |  90975.9278         9  10108.4364   Prob > F        =    0.0000
                                  Residual |  94397.5102       368  256.514973   R-squared       =    0.4908
                              -------------+----------------------------------   Adj R-squared   =    0.4783
                                     Total |  185373.438       377  491.706732   Root MSE        =    16.016
                              
                              --------------------------------------------------------------------------------------------------------
                                                          Innovation | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
                              ---------------------------------------+----------------------------------------------------------------
                                                 KnowledgeCapitalFem |   .0451982   .0732222     0.62   0.537    -.0987882    .1891846
                                                ICT_AnnualInvestment |   2.45e-10   5.36e-10     0.46   0.648    -8.09e-10    1.30e-09
                                               LaborForceParticipFem |   .0406452   .0648221     0.63   0.531     -.086823    .1681134
                                           RegulatoryQualityEstimate |   5.042419   1.711027     2.95   0.003     1.677803    8.407035
                                                      DomesticCredit |   .0285328   .0173172     1.65   0.100    -.0055203    .0625858
                                                 DomesticMarketScale |   3.00e-12   1.20e-12     2.50   0.013     6.44e-13    5.36e-12
                                              FDINetOutflow_prcntGDP |  -.0248731   .0383744    -0.65   0.517    -.1003338    .0505875
                                                      NonOECD_redone |  -21.27443   4.340024    -4.90   0.000    -29.80878   -12.74007
                                                                     |
                              c.NonOECD_redone#c.KnowledgeCapitalFem |   .2565829   .0870368     2.95   0.003     .0854311    .4277346
                                                                     |
                                                               _cons |   37.51479   5.736712     6.54   0.000     26.23394    48.79564
                              --------------------------------------------------------------------------------------------------------
                              
                              . margins, at (KnowledgeCapitalFem=(0(5)71.2) NonOECD ==(0 1))
                              Click image for larger version

Name:	Final Marginsplot.png
Views:	1
Size:	217.4 KB
ID:	1745411


                              Do you think correlations between variables matter when running reghdfe or country year fixed effects?

                              I have one IV highly correlated with the DV.



                              Comment

                              Working...
                              X