Hello All,
I am estimating a multi-way fixed effects model.
I want to examine how macro level factors such as infrastructure, regulation quality and labor force, impact innovation differently across multiple regions.
For example, if I have a model where the main effect is infrastructure investment and the interaction is - infrastructure investment x OECD region- what does it mean if only the interaction is significant versus if both main effect and interaction are significant?
Should we look at the significance of the the interaction only or both the main effect and interaction?
Does it create a better model if the main effect is dropped when an interaction is added?
Example with main effects and interaction:
Example only with the interaction:
I am estimating a multi-way fixed effects model.
I want to examine how macro level factors such as infrastructure, regulation quality and labor force, impact innovation differently across multiple regions.
For example, if I have a model where the main effect is infrastructure investment and the interaction is - infrastructure investment x OECD region- what does it mean if only the interaction is significant versus if both main effect and interaction are significant?
Should we look at the significance of the the interaction only or both the main effect and interaction?
Does it create a better model if the main effect is dropped when an interaction is added?
Example with main effects and interaction:
Code:
reghdfe Innovation ICT_AnnualInvestment KnowledgeCapitalFem LaborForceParticipFem RegulatoryQualityEstimate DomesticCredit DomesticMarketScale FDINetOutflow_prcntGDP i.OECD_nonOECD#(c.ICT_AnnualInvestment), absorb (ccode year) cluster (ccode)
Code:
HDFE Linear regression Number of obs = 374 Absorbing 2 HDFE groups F( 8, 81) = 2.05 Statistics robust to heteroskedasticity Prob > F = 0.0509 R-squared = 0.9691 Adj R-squared = 0.9589 Within R-sq. = 0.0632 Number of clusters (ccode) = 82 Root MSE = 4.4788 (Std. err. adjusted for 82 clusters in ccode) ----------------------------------------------------------------------------------------------------- | Robust Innovation | Coefficient std. err. t P>|t| [95% conf. interval] ------------------------------------+---------------------------------------------------------------- ICT_AnnualInvestment | -1.12e-09 4.26e-10 -2.64 0.010 -1.97e-09 -2.76e-10 KnowledgeCapitalFem | .0392724 .0197721 1.99 0.050 -.000068 .0786128 LaborForceParticipFem | .2695543 .2103904 1.28 0.204 -.1490566 .6881651 RegulatoryQualityEstimate | 4.50043 5.835112 0.77 0.443 -7.109613 16.11047 DomesticCredit | .0798555 .0662213 1.21 0.231 -.0519041 .211615 DomesticMarketScale | 3.55e-13 2.40e-12 0.15 0.883 -4.41e-12 5.12e-12 FDINetOutflow_prcntGDP | -.0041192 .0041898 -0.98 0.328 -.0124555 .0042171 | OECD_nonOECD#c.ICT_AnnualInvestment | NonOECD | 1.19e-09 5.65e-10 2.11 0.038 6.62e-11 2.31e-09 | _cons | 13.19419 15.29075 0.86 0.391 -17.2296 43.61797 ----------------------------------------------------------------------------------------------------- Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| ccode | 82 82 0 *| year | 5 1 4 | -----------------------------------------------------+ * = FE nested within cluster; treated as redundant for DoF computation
Example only with the interaction:
Code:
reghdfe Innovation KnowledgeCapitalFem LaborForceParticipFem RegulatoryQualityEstimate DomesticCredit DomesticMarketScale FDINetOutflow_prcntGDP i.OECD_nonOECD#(c.ICT_AnnualInvestment), absorb (ccode year) cluster (ccode)
Code:
HDFE Linear regression Number of obs = 374 Absorbing 2 HDFE groups F( 8, 81) = 2.05 Statistics robust to heteroskedasticity Prob > F = 0.0509 R-squared = 0.9691 Adj R-squared = 0.9589 Within R-sq. = 0.0632 Number of clusters (ccode) = 82 Root MSE = 4.4788 (Std. err. adjusted for 82 clusters in ccode) ----------------------------------------------------------------------------------------------------- | Robust Innovation | Coefficient std. err. t P>|t| [95% conf. interval] ------------------------------------+---------------------------------------------------------------- KnowledgeCapitalFem | .0392724 .0197721 1.99 0.050 -.000068 .0786128 LaborForceParticipFem | .2695543 .2103904 1.28 0.204 -.1490566 .6881651 RegulatoryQualityEstimate | 4.50043 5.835112 0.77 0.443 -7.109613 16.11047 DomesticCredit | .0798555 .0662213 1.21 0.231 -.0519041 .211615 DomesticMarketScale | 3.55e-13 2.40e-12 0.15 0.883 -4.41e-12 5.12e-12 FDINetOutflow_prcntGDP | -.0041192 .0041898 -0.98 0.328 -.0124555 .0042171 | OECD_nonOECD#c.ICT_AnnualInvestment | OECD | -1.12e-09 4.26e-10 -2.64 0.010 -1.97e-09 -2.76e-10 NonOECD | 6.68e-11 1.73e-10 0.39 0.700 -2.77e-10 4.11e-10 | _cons | 13.19419 15.29075 0.86 0.391 -17.2296 43.61797 ----------------------------------------------------------------------------------------------------- Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| ccode | 82 82 0 *| year | 5 1 4 | -----------------------------------------------------+ * = FE nested within cluster; treated as redundant for DoF computation
Comment