Dear all, I am working on inflation convergence using PS methodology and to account for reason behind formation of different clubs, I have thought of using mlogit model. However, when I use xtlogit, it suggests that outcome does not vary. Is there any way to go around since PS methodology gives clubs that are non-varying with years/time, it gives club considering panel of data. Can I use mlogit and run it for panel of data or should I take average of the relevant variables and then form a cross-sectional data and then run mlogit command?
xtset code1 date
xtlogit club_group IFI_index1 rel_manu_gdp
outcome does not vary; remember:
0 = negative outcome,
all other nonmissing values = positive outcome
xtset code1 date
xtlogit club_group IFI_index1 rel_manu_gdp
outcome does not vary; remember:
0 = negative outcome,
all other nonmissing values = positive outcome
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float date long code1 float(club_group rel_manu_gdp rel_agri_gdp rel_industry_gdp rel_fis_def IFI_index1 ln_wage dev_temp) 2011 2 4 .13364772 .13716458 .2969404 .04059546 .21019286 . -.0881646 2012 2 4 .10558365 .138112 .25585863 .04599755 .4216687 . .1682665 2013 2 4 .09475113 .14891067 .24402127 .04431429 .7265298 . -.1028404 2014 2 4 .1098343 .13717477 .25157568 .0714115 .8131914 . .1097339 2015 2 4 .1102452 .11724608 .24840277 .04384823 .08404899 . .1376355 2016 2 4 .1120763 .11903419 .2578909 .05721645 .15691006 . .3191977 2017 2 4 .11047008 .12462392 .2477202 .05443251 .2097996 13.027692 .3681092 2018 2 4 .11412922 .11059942 .24257964 .05655952 .2446741 15.512598 .1165363 2019 2 4 .11017014 .12013259 .232954 .06107013 .293414 12.9836 .4634914 2020 2 4 .11987834 .11887106 .24817663 .0870526 .3152951 13.043105 .1767556 2021 2 4 .11576699 .1119776 .24674565 .05422694 .3907037 15.528012 .1357741 2022 2 4 .11339237 .11045721 .2436204 .06459172 .39962345 18.012918 .1500955 2023 2 4 . . . . . . . 2011 3 5 .011660817 .23124123 .1894485 .0892188 0 . .1265991 2012 3 5 .012422948 .2487351 .1922765 .020532336 .08393866 . -.114011 2013 3 5 .014818363 .2396782 .1983983 .13015199 .1901216 . -.0031983 2014 3 5 .04517251 .2111921 .25719827 -.03608517 .3385143 . .2783772 2015 3 5 .03108818 .1879848 .23806113 -.013342266 .4592521 . -.0175695 2016 3 5 .03309214 .12803085 .258107 -.05673936 .5457181 . .279194 2017 3 5 .023690905 .12491732 .2582766 .020099895 .7220258 13.241215 .3618815 2018 3 5 .02905441 .11710556 .23887804 .11854781 .7410245 15.72612 .0198359 2019 3 5 .010959593 .10124183 .2076325 .05391762 .7925097 13.313251 .2176776 2020 3 5 .01078783 .11145417 .18488836 .05885748 .9052114 13.335074 .1146215 2021 3 5 .009683074 .1132707 .20776464 .0381808 .957505 15.819982 .6004884 2022 3 5 . . . . . 18.304888 .1509927 2023 3 5 . . . . . . . 2011 4 1 .10757855 .14398381 .3063298 .011496427 0 . .1819623 2012 4 1 .0968183 .1694628 .28212556 .01028896 .09451348 . -.2963088 2013 4 1 .10831022 .1535468 .29068735 .02447494 .23327303 . -.1928473 2014 4 1 .10912807 .14785127 .29038897 .032866802 .3424987 . .1662195 2015 4 1 .13248754 .13392639 .3566148 -.01572401 .4330762 . -.10321 2016 4 1 .14572698 .12993453 .3687206 .0303146 .5156338 . .2438151 2017 4 1 .15203854 .12109897 .3800024 .04225185 .6239421 12.937557 .2194942 2018 4 1 .1455639 .11769339 .3760103 .02068477 .6786715 15.422463 -.1349764 2019 4 1 .1441306 .10758002 .36418685 .06155195 .7081159 12.93864 .1268125 2020 4 1 .1710941 .11468346 .3546855 .04572213 .8940912 12.987007 -.0214138 2021 4 1 .1719662 .11436927 .3547587 .14080316 .9556162 15.471913 .4122375 2022 4 1 .17062534 .12029167 .3519474 .05309278 .9835006 17.95682 .1435409 2023 4 1 . . . . . . . 2011 5 3 .05934072 .17240065 .18426508 .02393342 0 . .0727502 2012 5 3 .03781968 .18490377 .154001 .0254817 .08815807 . -.0730349 2013 5 3 .07006434 .13761231 .19161 .030973503 .2115996 . -.2534569 2014 5 3 .09287879 .12613977 .20332025 .03999536 .39778405 . -.2194331 2015 5 3 .07887074 .11916047 .1960075 .0406829 .516402 . -.2582089 2016 5 3 .09151776 .12164711 .202396 .05169113 .6195814 . .2546462 2017 5 3 .08891127 .12125135 .1965994 .04158094 .6984116 12.907267 .0131157 2018 5 3 .07913925 .10295621 .19219394 .036202498 .6965202 15.392173 -.3594004 2019 5 3 .07792466 .09299076 .19387235 .03073086 .7850489 12.943005 -.1840746 2020 5 3 .09584175 .10828561 .20592533 .08089057 .9026229 13.025047 -.4367913 2021 5 3 .09333328 .10264447 .205436 .19212873 .9425674 15.509953 -.0975696 2022 5 3 .08530129 .0973092 .19845265 .0585008 .9887738 17.99486 -.1054478 2023 5 3 . . . . . . . 2011 7 3 .15404397 .11376065 .443882 .0050546 0 . -.0727374 2012 7 3 .16027357 .1159035 .4414122 .016008204 .09993458 . .0652151 2013 7 3 .1965676 .10859328 .4638433 .027697517 .24734175 . -.3087138 2014 7 3 .1783202 .11010426 .4486982 .04345757 .3842968 . -.1213748 2015 7 3 .1785314 .1038365 .4459601 .028564867 .5421306 . .0243381 2016 7 3 .14826572 .11483993 .4183447 .01893734 .5821364 . .31568 2017 7 3 .1591746 .09060244 .4439256 .030935464 .6772299 12.716412 .2611257 2018 7 3 .1822016 .0932191 .4646529 .033907223 .6812004 15.20132 -.0655535 2019 7 3 .18032564 .09243255 .4624621 .07150114 .7722453 12.794374 .1447752 2020 7 3 .1825388 .09748602 .473023 .06410766 .8858902 12.820193 -.1791952 2021 7 3 .18108575 .09462006 .471306 .05699698 .9230224 15.3051 -.0074331 2022 7 3 .17609265 .09333882 .470567 .05050463 1 17.790007 .1225955 2023 7 3 . . . . . . . 2011 10 2 .0549954 .0019187167 .13790348 .007402613 .018350184 . .0657433 2012 10 2 .06010157 .0016611917 .14167967 .00623247 .17297143 . -.0997046 2013 10 2 .05838257 .0014045768 .14338887 .010035418 .36036325 . -.1154219 2014 10 2 .04808797 .0006478736 .127157 -.000511258 .4927274 . -.2030652 2015 10 2 .05898893 .0004540996 .1366208 -.00280054 .54021645 . .0907878 2016 10 2 .0525074 .0004255076 .13101213 .002053676 .5916141 . 1.03549 2017 10 2 .04980943 .00036713 .13400243 -.0002084813 .6058464 13.448195 .6469594 2018 10 2 .0487739 .0003601456 .13658932 -.0039570024 .6049827 15.933102 .6097534 2019 10 2 .04937278 .0003656458 .13338073 .0007113997 .7175361 13.540215 -.1080624 2020 10 2 .04732624 .0003719676 .13707814 .01224798 .7294692 13.49775 -.1103298 2021 10 2 .04814519 .00035945585 .14245014 .02436076 .6370811 15.982656 .3023385 2022 10 2 .04473269 .0002915041 .13676794 .014087196 .5716644 18.467564 .5862077 2023 10 2 . . . . . . . 2011 11 1 .3845821 .02417396 .5911835 .02077105 0 . -.0611753 2012 11 1 .3875519 .028705264 .5124155 .031994224 .20921 . .1367269 2013 11 1 .3219001 .034763813 .4138453 .04292259 .4920111 . -.0459024 2014 11 1 .4280626 .02664341 .5096528 .023681035 .63551 . .2132977 2015 11 1 .4320555 .02234738 .52353245 .032153882 .6919079 . .3328916 2016 11 1 .4204743 .02158139 .5492415 .018244173 .7019309 . .2420738 2017 11 1 .41969025 .020826096 .54403186 .030577734 .7585647 13.475726 .388555 2018 11 1 .4318907 .021023497 .53929186 .033978473 .7956978 15.960633 .2575773 2019 11 1 .412639 .01825528 .52508324 .0344453 .8381343 13.408748 .3871169 2020 11 1 .4167816 .018844806 .5361619 .05116186 .8966638 13.443605 .2795146 2021 11 1 .3898055 .018161524 .5116384 .12115724 .9119023 15.928513 .1449199 2022 11 1 . . . . . 18.413418 .1391195 2023 11 1 . . . . . . . 2011 12 1 .2547397 .12915681 .3929843 .017912429 0 . -.0449343 2012 12 1 .2832849 .09231366 .41995105 .024158785 .1305427 . -.2809364 2013 12 1 .27017832 .11780458 .3991748 .02508975 .3360414 . -.2638389 2014 12 1 .2960798 .10378323 .41830295 .02257626 .53821313 . -.0035613 2015 12 1 .311031 .08708879 .4417341 .025730455 .669616 . .3410608 2016 12 1 .3141135 .08528277 .4366754 .016793331 .7199525 . .3478894 2017 12 1 .3157508 .08618946 .434054 .01966372 .7750405 12.963132 .2837966 2018 12 1 .3268391 .06641738 .44291425 .02228619 .7868733 15.44804 .4761974 2019 12 1 .3231928 .07153846 .4356183 .01942815 .8652374 12.92704 .1355885 end
Comment