Hello all,
I have an unbalanced yearly panel of firms from 1966 to 2019, N varying from 4000 to 11000. The firm identifier is gvkey, and the year one is fyear. I want to estimate how one variable (defdollars) effects some outcome variables (sale here).
I have run two regressions:
As you can see, the confidence intervals do not overlap at all. Ex-ante the first differences point estimate seems a little absurd as well. It is lvar rather than var as I took the inverse hyperbolic sine as a log-like (I'm aware that's not great) but the same problem occurs when regressing just sale and defdollars in levels as well.
My code looks like this:
As you can see there are lots of 0s for the defdollars data (~90% of observations receive no defdollars in a given year).
I would be exceptionally grateful for any help at all.
I have an unbalanced yearly panel of firms from 1966 to 2019, N varying from 4000 to 11000. The firm identifier is gvkey, and the year one is fyear. I want to estimate how one variable (defdollars) effects some outcome variables (sale here).
I have run two regressions:
Code:
. xtreg lsale ldefdollars, fe vce(cluster gvkey) Fixed-effects (within) regression Number of obs = 404,033 Group variable: gvkey Number of groups = 33,244 R-squared: Obs per group: Within = 0.0106 min = 1 Between = 0.0483 avg = 12.2 Overall = 0.0515 max = 54 F(1, 33243) = 506.04 corr(u_i, Xb) = 0.1786 Prob > F = 0.0000 (Std. err. adjusted for 33,244 clusters in gvkey) ------------------------------------------------------------------------------ | Robust lsale | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- ldefdollars | .0309712 .0013768 22.50 0.000 .0282727 .0336698 _cons | 19.38947 .0028799 6732.78 0.000 19.38383 19.39511 -------------+---------------------------------------------------------------- sigma_u | 2.6370201 sigma_e | .94949394 rho | .88523345 (fraction of variance due to u_i) ------------------------------------------------------------------------------ . reg d.lsale d.ldefdollars, vce(cluster gvkey) Linear regression Number of obs = 368,196 F(1, 31711) = 102.95 Prob > F = 0.0000 R-squared = 0.0001 Root MSE = .55901 (Std. err. adjusted for 31,712 clusters in gvkey) ------------------------------------------------------------------------------ | Robust D.lsale | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- ldefdollars | D1. | .0023661 .0002332 10.15 0.000 .001909 .0028232 | _cons | .080785 .0009513 84.92 0.000 .0789204 .0826496
As you can see, the confidence intervals do not overlap at all. Ex-ante the first differences point estimate seems a little absurd as well. It is lvar rather than var as I took the inverse hyperbolic sine as a log-like (I'm aware that's not great) but the same problem occurs when regressing just sale and defdollars in levels as well.
My code looks like this:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input double(gvkey fyear sale defdollars) 1000 1966 24613310.84450585 0 1000 1967 21321025.835530076 0 1000 1968 42108496.80268002 0 1000 1969 202806039.9322772 0 1000 1970 233549293.0123074 0 1000 1971 230621977.36524698 0 1000 1972 161521176.707492 0 1000 1973 168213337.9115217 0 1000 1974 205681929.6039222 0 1000 1975 191568261.0541805 0 1000 1976 235531182.26968852 0 1000 1977 260292422.77736828 0 1001 1983 55555738.15022751 0 1001 1984 67575042.65701024 0 1001 1985 110095568.90021476 0 1002 1966 129415225.67051686 0 1002 1967 224837751.57668054 0 1002 1968 148455212.57907015 0 1002 1969 151535032.88585508 0 1002 1970 109884337.04538473 0 1002 1971 112459657.06784469 0 1002 1972 124367827.6388692 0 1003 1982 28974249.544596586 0 1003 1983 30174455.45603812 0 1003 1984 29196590.274121124 0 1003 1985 49501872.11657114 0 1003 1986 72832911.73878749 0 1003 1987 73128717.95258583 0 1003 1988 62038335.45143017 0 1003 1989 35056071.89442273 0 1004 1966 28410304.7297446 0 1004 1967 27348338.64824531 0 1004 1968 56652999.211821936 0 1004 1969 85180489.3329165 0 1004 1970 109657665.18275009 922142.3502636601 1004 1971 122972563.31390788 1951556.290080758 1004 1972 175354970.52188432 0 1004 1973 255381266.81814915 294094.84244133596 1004 1974 223260428.94274917 474100.42392558313 1004 1975 246222395.54191896 333051.5555911483 1004 1976 285610018.4311947 198598.8828726256 1004 1977 309962572.57839173 347297.0000878339 1004 1978 370310865.431648 795750.0458010251 1004 1979 376246330.4171706 2048057.6106219585 1004 1980 349955515.7147325 5499670.775788961 1004 1981 424543298.6668024 2519401.58141096 1004 1982 352304873.3063805 12309737.647751423 1004 1983 388883604.0583084 58576902.72535901 1004 1984 462251547.77335477 13520497.802839806 1004 1985 507547162.23800254 21125628.420330066 1004 1986 598165462.6311699 26757690.03205041 1004 1987 680545762.6361747 23767420.619508103 1004 1988 768407034.6879776 77381515.58593714 1004 1989 809444645.4575862 29206418.54202905 1004 1990 818175783.0478432 33539556.676119193 1004 1991 717012976.3323003 79189900.40432733 1004 1992 634911802.7111324 51390084.143460035 1004 1993 660662789.658876 117203765.24939635 1004 1994 716088646.4806716 73704170.45320241 1004 1995 784636932.6752614 59916633.102194175 1004 1996 899238515.2047518 59395948.37193432 1004 1997 1173173132.7371325 45452551.9791335 1004 1998 1361746404.537615 69957949.38187218 1004 1999 1498238142.8375666 57387982.352752134 1004 2000 1250389157.5803041 52310037.76444111 1004 2001 893354309.325109 125923941.95939985 1004 2002 835097194.4199641 134346540.91277105 1004 2003 880601243.2826586 195554173.8737517 1004 2004 983672710.3442054 235089463.52230775 1004 2005 1144322047.7315855 263227294.27620092 1004 2006 1312797378.2097762 300761628.8055568 1004 2007 1668144392.7556825 285652521.65513384 1004 2008 1682630653.686196 402325892.40121555 1004 2009 1588034281.8516088 393495639.57619745 1004 2010 2060594515.1631072 531648344.97950876 1004 2011 2358545130.3699007 539468245.2227405 1004 2012 2418738527.866112 494368015.10558474 1004 2013 2233341446.764629 503366236.68542755 1004 2014 1719759437.2219522 334419169.9707764 1004 2015 1776884593.7424757 356149786.51001954 1004 2016 1871348084.9330153 252641538.44245732 1004 2017 1818388534.1301599 277852005.5015617 1004 2018 2086221411.7994044 352989998.11839515 1004 2019 2089300000.0000005 427336844.5152645 1005 1974 24972013.70849408 6159218.438412533 1005 1975 23975969.85025267 4625300.255175948 1005 1976 28158484.464440133 3333624.1053619296 1005 1977 25830214.381532643 2337575.962129651 1005 1978 25542016.176005457 2861579.5764687844 1005 1979 39238594.6158823 0 1005 1980 61764314.1592207 0 1005 1981 86685272.22783822 0 1006 1974 22127411.16494058 0 1006 1975 22782223.263358552 0 1006 1976 22200517.978261366 0 1006 1977 22611038.342256956 0 1006 1978 21372910.053691063 0 1006 1979 21223753.129483245 0 1006 1980 20355649.855057508 0 1006 1981 22271606.50846911 0 end
I would be exceptionally grateful for any help at all.
Comment