Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Year*Treatment Adjustment and Matching for Staggered Difference-in-Differences

    Hello everyone,

    Forgive me if anything is unclear, I am still learning the nuances of this analysis.

    I am working with long-form panel data regarding coups in different countries. Basic variables are:

    HTML Code:
    coup       = 1 if coup occurred in country in obs. year
    coup_evr   = 1 if coup in country anytime during period
    iso        = 3-letter country code
    region     = numbered IMF regions
    My general idea is to run a staggered diff-in-diff using coup as the treatment and factors like ln(GDP), ln(population) and HDI as controls. To examine parallel pre-trends, I am using lgraph to show differences between the 2 groups for each factor by region, such as:

    Code:
    foreach x in 1 2 3 4 5 {
        lgraph lnGDP year if region == `x', by (coup_evr) saving(Avg_lnGDP_R`x'.gph, asis replace)
    }
    The other method I am using is a set of coup*year interactions for each variable in the form of:

    Code:
    foreach x in 1 2 3 4 5 {
    reg HDI coup##ibn.year if region == `x'
    }
    (Side note: I am also unsure whether it is more proper to use coup or coup_evr for these tests.)

    However, it's been brought up that I should use years adjusted around the treatment instead of strict years . To construct the adjusted year, I use:

    Code:
    bysort iso (year): gen firstyr = year if coup == 1
    bysort iso (firstyr): replace firstyr = firstyr[1]
    bysort iso (year): gen adjyr = year - firstyr
    This is much more logical, but runs into a few hurdles. First, my interactions test cannot run with negative factor values (adjyr = -1, -2... for pre-treat years). Second, my control group comparison has no treatment to center year adjustment around, making graphing on adjyr impossible with my current approach.

    My professor suggested covariate matching, so I have been examining propensity score match methods, but my understanding of how to do so through Stata is foggy. I have seen some applications of matching through FD methods (Weihua An, 2016. "Combining Difference-in-difference and Matching for Panel Data Analysis," 2016 Stata Conference 21, Stata Users Group.), though the referenced command DIDMatch does not seem to exist currently, and I am not confident in my ability to manually implement the method with the time I have.

    I am currently using didregress for the final analysis, and I have been looking at flexpaneldid as it seems to handle/display pre-trend matching and testing inherently, though the documentation says it requires the treatment variable to equal 1 for the full treatment period. I am wondering if I would need to set my coup variable =1 after the initial coup year, and if so, how I should go about constructing it?

    All advice, general or specific, is greatly appreciated. I know this is a bit of jumble so I will try to clarify anything that I can. Thank you all!
    Last edited by Ryan Buskirk; 02 Feb 2024, 12:34.

  • #2
    We have a plethora of DID estimators for questions like these, you do not need to do all this. Calloway and Santanna, Chaisemartin's new did_multiplegt_dyn, among many others, you don't need to manually do the interactions or anything.

    This is only but a partial list

    Comment


    • #3
      Thank you Jared for the response, that is an incredibly helpful resource for such analyses.

      I have taken some time to look through the listed packages and have run into various problems with the commands I have attempted.

      Trying the staggered command following Roth and Sant'Anna 2023, presents this error:

      Code:
      . staggered lnFDI, i(id) t(year) g(firstyr) estimand(simple)
      
      Panel is unbalanced (or has missing values) for some observations. Will
      drop observations with missing values of Y_ for any time periods. If
      you wish to include these observations, provide staggered with a balanced
      data set with imputed outcomes.
      
      Treatment cohorts found with a single cross-sectional unit. We drop these cohorts.
              g =      1986
              g =      1987
              g =      1994
              g =      1997
              g =      2009
              g =      2012
      Some estimated variances < 0; setting to 0 as applicable.
      estimates post: matrix has missing values
      r(504);
      I am unsure of the exact prediction matrix it is attempting to construct, so do not know how to proceed with attempting to balance the data around it.

      Next, I attempted using csdid, which produced these estimates:

      Code:
      . csdid lnFDI ([controls]), i(id) t(year) gvar(firstyr)
      
                                                                  Number of obs = 32
      Outcome model  : least squares
      Treatment model: inverse probability
      ------------------------------------------------------------------------------
                   | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
      -------------+----------------------------------------------------------------
      g2011        |
      
       t_1995_1996 |          0  (omitted)
       t_1996_1997 |          0  (omitted)
       t_1997_1998 |          0  (omitted)
       t_1998_1999 |          0  (omitted)
       t_1999_2000 |          0  (omitted)
       t_2000_2001 |          0  (omitted)
       t_2001_2002 |          0  (omitted)
       t_2002_2003 |          0  (omitted)
       t_2003_2004 |          0  (omitted)
       t_2004_2005 |          0  (omitted)
       t_2005_2006 |          0  (omitted)
       t_2006_2007 |   .0414243   .4321404     0.10   0.924    -.8055553     .888404
       t_2007_2008 |  -1.20e-16   2.69e-16    -0.44   0.657    -6.48e-16    4.08e-16
       t_2008_2009 |   2.14e-16   1.86e-16     1.15   0.250    -1.50e-16    5.78e-16
       t_2009_2010 |          0  (omitted)
       t_2010_2011 |          0  (omitted)
       t_2010_2012 |  -.9469421   .4479635    -2.11   0.035    -1.824934   -.0689497
       t_2010_2013 |  -1.188822   .9266548    -1.28   0.200    -3.005032    .6273882
       t_2010_2014 |          0  (omitted)
       t_2010_2015 |          0  (omitted)
       t_2010_2016 |          0  (omitted)
       t_2010_2017 |          0  (omitted)
       t_2010_2018 |          0  (omitted)
       t_2010_2019 |          0  (omitted)
       t_2010_2020 |          0  (omitted)
       t_2010_2021 |          0  (omitted)
      With the rest of the years and estimates being omitted or unparied.

      Finally, I attempted flexpaneldid, which continues to give me this error:

      Code:
      ************************* flexpaneldid *****************************************
      ********************************************************************************
      
      --------------------------------------------------------------------------------
      outcome:                lnFDI
      id:                     id
      treatment:              treat
      time:                   year
      outcome_time_start:     -1
      outcome_time_end:       .
      outcome_dev:            
      cemmatching:            
      statmatching:           con([controls])
      test:                   test
      outcomemissing:         outcomemissing
      didmodel:               didmodel
      --------------------------------------------------------------------------------
      Not all variables needed for flexpaneldid are available in the preprocessed dataset.
      variable selection_group not found
      r(111);
      This seems to be a macro issue with the command, but if not, I do not know where to start remedying it.

      I have even attempted the basic form of DiD model using:

      Code:
      . reg lnFDI coup_evr##treat i.year i.id [controls]
      note: 0b.coup_evr#1.treat identifies no observations in the sample.
      note: 1.coup_evr#1.treat omitted because of collinearity.
      note: 215.id omitted because of collinearity.
      
            Source |       SS           df       MS      Number of obs   =     3,453
      -------------+----------------------------------   F(207, 3245)    =    120.98
             Model |  16199.0305       207  78.2561862   Prob > F        =    0.0000
          Residual |  2099.08694     3,245  .646868087   R-squared       =    0.8853
      -------------+----------------------------------   Adj R-squared   =    0.8780
             Total |  18298.1175     3,452  5.30072928   Root MSE        =    .80428
      
      --------------------------------------------------------------------------------
               lnFDI | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
      ---------------+----------------------------------------------------------------
          1.coup_evr |  -1.718971   .4605761    -3.73   0.000    -2.622021   -.8159218
             1.treat |  -.2003684   .1255813    -1.60   0.111    -.4465951    .0458584
                     |
      coup_evr#treat |
                0 1  |          0  (empty)
                1 1  |          0  (omitted)
                     |
                year |
               1996  |   .0807008    .170874     0.47   0.637     -.254331    .4157326
               1997  |   .3098661   .1742235     1.78   0.075    -.0317331    .6514652
               1998  |   .4146573     .16195     2.56   0.010     .0971227    .7321919
               1999  |   .4747997   .1600899     2.97   0.003     .1609122    .7886873
               2000  |   .6637883   .1650547     4.02   0.000     .3401663    .9874104
               2001  |   .2901839   .1660704     1.75   0.081    -.0354296    .6157973
               2002  |   .1651943   .1629926     1.01   0.311    -.1543846    .4847732
               2003  |   .2053494   .1607022     1.28   0.201    -.1097387    .5204374
               2004  |   .3728109   .1611538     2.31   0.021     .0568373    .6887844
               2005  |    .521787    .162344     3.21   0.001     .2034799    .8400941
               2006  |   .7236341   .1656193     4.37   0.000     .3989051    1.048363
               2007  |   .9447344   .1689257     5.59   0.000     .6135226    1.275946
               2008  |   .8105531   .1714941     4.73   0.000     .4743054    1.146801
               2009  |    .499731   .1736215     2.88   0.004     .1593121    .8401499
               2010  |   .5261718   .1757842     2.99   0.003     .1815126     .870831
               2011  |   .6582168   .1789377     3.68   0.000     .3073744    1.009059
               2012  |   .4599783   .1806046     2.55   0.011     .1058677    .8140888
               2013  |   .3559142   .1844918     1.93   0.054     -.005818    .7176464
               2014  |   .3088537   .1872238     1.65   0.099    -.0582351    .6759424
               2015  |   .2564928   .1900738     1.35   0.177    -.1161841    .6291696
               2016  |   .2721468   .1915228     1.42   0.155    -.1033711    .6476646
               2017  |   .2484885    .194269     1.28   0.201    -.1324139    .6293909
               2018  |   .2040704   .1983333     1.03   0.304    -.1848008    .5929416
               2019  |   .2453136   .1997273     1.23   0.219    -.1462907     .636918
               2020  |  -.0346564   .1986165    -0.17   0.861    -.4240827      .35477
               2021  |   .3268843   .1976496     1.65   0.098    -.0606464    .7144149
                     |
                  id |
                  4  |  -2.169086    .617851    -3.51   0.000    -3.380504   -.9576687
                  6  |  -2.787588   .5522021    -5.05   0.000    -3.870288   -1.704888
                  7  |  -2.973145   .4714561    -6.31   0.000    -3.897527   -2.048764
                  8  |   -2.68673   .6116995    -4.39   0.000    -3.886086   -1.487374
                 11  |  -3.222302   .5939911    -5.42   0.000    -4.386938   -2.057667
                 12  |  -3.644166   .5901855    -6.17   0.000     -4.80134   -2.486992
                 13  |   .6328727   .4722066     1.34   0.180    -.2929806    1.558726
                 14  |  -3.016582    .436309    -6.91   0.000    -3.872051   -2.161113
                 15  |  -1.730587    .587257    -2.95   0.003    -2.882019   -.5791552
                 16  |  -2.213149   .4024262    -5.50   0.000    -3.002184   -1.424114
                 17  |  -.1526603   .4133686    -0.37   0.712    -.9631502    .6578296
                 18  |  -1.115833   .5006769    -2.23   0.026    -2.097508   -.1341586
                 19  |  -.2554981   .5197999    -0.49   0.623    -1.274667    .7636711
                 20  |  -3.101288   .7526575    -4.12   0.000    -4.577021   -1.625556
                 21  |  -2.874629   .9242818    -3.11   0.002    -4.686864   -1.062394
                 22  |  -2.666221   .5710855    -4.67   0.000    -3.785946   -1.546497
                 23  |  -3.178417   .4997632    -6.36   0.000    -4.158301   -2.198534
                 24  |  -1.839389    .967975    -1.90   0.057    -3.737293     .058515
                 26  |   -.483462   .4545422    -1.06   0.288    -1.374681    .4077567
                 27  |  -1.783634   .5699058    -3.13   0.002    -2.901045   -.6662219
                 28  |  -2.398681   .9606496    -2.50   0.013    -4.282222   -.5151395
                 29  |  -2.828103   .9290134    -3.04   0.002    -4.649615    -1.00659
                 30  |  -3.962584   .7835415    -5.06   0.000     -5.49887   -2.426298
                 31  |  -2.839397   .5920042    -4.80   0.000    -4.000136   -1.678657
                 32  |  -.5258451   .5001936    -1.05   0.293    -1.506572    .4548822
                 33  |  -3.258045   .5826729    -5.59   0.000    -4.400489   -2.115601
                 34  |  -2.965942   .6403964    -4.63   0.000    -4.221565    -1.71032
                 36  |  -2.174032   .4855592    -4.48   0.000    -3.126066   -1.221998
                 37  |  -1.322191   .8430997    -1.57   0.117    -2.975252     .330871
                 38  |    .065385   .3713119     0.18   0.860    -.6626446    .7934146
                 39  |  -2.106593   .3383617    -6.23   0.000    -2.770018   -1.443169
                 40  |   1.293778   .4628789     2.80   0.005     .3862133    2.201342
                 41  |   1.351201   .5012364     2.70   0.007     .3684291    2.333973
                 42  |  -2.008114   .4152947    -4.84   0.000     -2.82238   -1.193847
                 43  |  -1.582987   .7720541    -2.05   0.040     -3.09675   -.0692237
                 44  |  -1.999025   .8213968    -2.43   0.015    -3.609534   -.3885164
                 45  |  -2.252282   .5518629    -4.08   0.000    -3.334317   -1.170247
                 49  |  -.7595422   .7782145    -0.98   0.329    -2.285384    .7662993
                 50  |  -.7105498   .5391869    -1.32   0.188    -1.767731    .3466314
                 51  |  -1.447623   .6182175    -2.34   0.019    -2.659759   -.2354869
                 52  |  -.6260229    .678109    -0.92   0.356    -1.955588    .7035422
                 53  |   -2.45539   1.181556    -2.08   0.038     -4.77206   -.1387186
                 54  |  -3.793411   .6394059    -5.93   0.000    -5.047091   -2.539731
                 55  |  -2.056107   .4477114    -4.59   0.000    -2.933932   -1.178281
                 56  |  -1.377406   .4291992    -3.21   0.001    -2.218935   -.5358774
                 57  |  -3.380927   .4350126    -7.77   0.000    -4.233854      -2.528
                 58  |  -.7261266   .4698102    -1.55   0.122    -1.647281    .1950281
                 59  |  -2.041922   .5331546    -3.83   0.000    -3.087275   -.9965679
                 60  |   -2.78493    .551205    -5.05   0.000    -3.865675   -1.704185
                 61  |  -2.462128   .7593557    -3.24   0.001    -3.950993   -.9732632
                 62  |     .76035   .4691858     1.62   0.105    -.1595804     1.68028
                 63  |  -3.123842    .637802    -4.90   0.000    -4.374377   -1.873306
                 64  |  -.1448737   .9384718    -0.15   0.877    -1.984931    1.695184
                 65  |  -3.149593   .5676487    -5.55   0.000     -4.26258   -2.036607
                 68  |  -1.799279   .6298437    -2.86   0.004     -3.03421   -.5643472
                 69  |  -2.841996   .6017931    -4.72   0.000    -4.021929   -1.662063
                 70  |  -.1504958   .5962871    -0.25   0.801    -1.319633    1.018641
                 71  |  -1.798013   .3515917    -5.11   0.000    -2.487377   -1.108649
                 73  |   .4098134   .4251867     0.96   0.335    -.4238481    1.243475
                 74  |   .6803633   .5912112     1.15   0.250    -.4788218    1.839548
                 75  |  -.2438404   .6286225    -0.39   0.698    -1.476378    .9886966
                 76  |  -.8465161   .6662728    -1.27   0.204    -2.152874    .4598419
                 77  |  -4.529124   .5289883    -8.56   0.000    -5.566309   -3.491939
                 78  |  -1.897941   1.134976    -1.67   0.095    -4.123283    .3273998
                 80  |  -2.111623    .371123    -5.69   0.000    -2.839282   -1.383964
                 82  |  -1.451291   .7705524    -1.88   0.060    -2.962109    .0595274
                 83  |  -1.290112   .6053145    -2.13   0.033    -2.476949    -.103275
                 84  |   .4272428   .4319047     0.99   0.323    -.4195907    1.274076
                 85  |  -2.932051   .5883639    -4.98   0.000    -4.085653   -1.778449
                 86  |  -1.101701   .4104112    -2.68   0.007    -1.906392   -.2970094
                 87  |   .6370864   .5217066     1.22   0.222    -.3858212    1.659994
                 88  |  -.4288087   .5807935    -0.74   0.460    -1.567568    .7099504
                 90  |  -1.909461   .8211971    -2.33   0.020    -3.519579   -.2993442
                 91  |  -1.506079   .6336728    -2.38   0.018    -2.748518   -.2636399
                 92  |  -3.624556   .4727037    -7.67   0.000    -4.551384   -2.697728
                 94  |  -3.734438   .9932074    -3.76   0.000    -5.681815    -1.78706
                 95  |  -3.031179   .5754278    -5.27   0.000    -4.159418   -1.902941
                 96  |  -3.891591   .5568566    -6.99   0.000    -4.983417   -2.799765
                 97  |  -2.138832   .5798978    -3.69   0.000    -3.275835   -1.001829
                 98  |  -2.255894   .4872337    -4.63   0.000    -3.211211   -1.300578
                 99  |  -5.455348    .641494    -8.50   0.000    -6.713122   -4.197573
                100  |   -1.84392   .4479552    -4.12   0.000    -2.722224   -.9656165
                101  |  -3.247243   .3519488    -9.23   0.000    -3.937307   -2.557178
                102  |   -.298743   .5257114    -0.57   0.570    -1.329503    .7320168
                103  |   1.516968   .3997984     3.79   0.000     .7330852    2.300851
                104  |  -3.507699   1.214146    -2.89   0.004    -5.888269   -1.127129
                106  |  -3.919421   .5555077    -7.06   0.000    -5.008602   -2.830239
                107  |  -4.624936   .6201286    -7.46   0.000    -5.840819   -3.409053
                108  |   -1.29207    .442861    -2.92   0.004    -2.160386   -.4237546
                109  |  -1.598058   .5287049    -3.02   0.003    -2.634688   -.5614292
                110  |   1.738489    .505381     3.44   0.001     .7475907    2.729387
                111  |  -.9671919    .559023    -1.73   0.084    -2.063266    .1288818
                112  |  -2.409473   1.028654    -2.34   0.019    -4.426351    -.392596
                114  |  -3.658304   .4370479    -8.37   0.000    -4.515222   -2.801386
                115  |  -.1446979   .5912762    -0.24   0.807     -1.30401    1.014615
                116  |  -3.093195   .6430723    -4.81   0.000    -4.354064   -1.832326
                117  |  -1.159159   .9035741    -1.28   0.200    -2.930792    .6124749
                118  |  -2.977552   .6807854    -4.37   0.000    -4.312365   -1.642739
                121  |  -2.052662   .3644137    -5.63   0.000    -2.767167   -1.338158
                123  |  -2.604809   .6115964    -4.26   0.000    -3.803963   -1.405655
                124  |    .397649    .382823     1.04   0.299    -.3529503    1.148248
                125  |   .2895607   .8945831     0.32   0.746    -1.464444    2.043566
                126  |   -1.98838   .4950984    -4.02   0.000    -2.959117   -1.017643
                128  |  -2.812943   .6490297    -4.33   0.000    -4.085493   -1.540394
                129  |   1.017819   .3992795     2.55   0.011     .2349538    1.800685
                130  |  -.8136892   .9245457    -0.88   0.379    -2.626442    .9990631
                131  |   .6389925   .3987356     1.60   0.109    -.1428066    1.420792
                133  |   .4131181   .6029588     0.69   0.493    -.7691003    1.595337
                135  |   .4660385   .3587127     1.30   0.194    -.2372879    1.169365
                136  |   1.212622   .5242141     2.31   0.021     .1847976    2.240446
                137  |  -3.336494   .7127719    -4.68   0.000    -4.734023   -1.938966
                138  |  -2.188923    .363301    -6.03   0.000    -2.901245     -1.4766
                139  |  -2.469348   .4554854    -5.42   0.000    -3.362416    -1.57628
                140  |   -1.52494    .564545    -2.70   0.007    -2.631841   -.4180393
                142  |   1.535914   .4170484     3.68   0.000     .7182093    2.353619
                143  |    .325085   .5383814     0.60   0.546    -.7305168    1.380687
                144  |  -1.446319   .4650385    -3.11   0.002    -2.358118   -.5345203
                145  |  -1.590298   .5901194    -2.69   0.007    -2.747343   -.4332538
                146  |  -3.497802   .6582272    -5.31   0.000    -4.788385   -2.207219
                147  |  -2.507157   .3911701    -6.41   0.000    -3.274122   -1.740191
                149  |  -4.110546   .6609124    -6.22   0.000    -5.406394   -2.814698
                150  |  -2.908967   .5938614    -4.90   0.000    -4.073349   -1.744586
                151  |  -.2905167   .5429921    -0.54   0.593    -1.355159    .7741254
                152  |   .0730395    .592802     0.12   0.902    -1.089265    1.235344
                153  |  -.3136359   .4257677    -0.74   0.461    -1.148437    .5211648
                154  |   -.688448   .4675129    -1.47   0.141    -1.605098    .2282024
                156  |   -3.04594    .402518    -7.57   0.000    -3.835155   -2.256725
                157  |  -2.746087   .4878978    -5.63   0.000    -3.702706   -1.789468
                160  |  -2.854128   .5232837    -5.45   0.000    -3.880128   -1.828128
                161  |  -1.362949   .5078883    -2.68   0.007    -2.358763   -.3671345
                164  |  -1.427948   .7343306    -1.94   0.052    -2.867746    .0118507
                165  |  -.6314407   .4583964    -1.38   0.168    -1.530216     .267335
                166  |  -.8659695   .5660051    -1.53   0.126    -1.975733     .243794
                167  |  -.1732949   .4185135    -0.41   0.679    -.9938723    .6472825
                168  |  -3.150234   .4813962    -6.54   0.000    -4.094106   -2.206363
                169  |   1.035506   .3875135     2.67   0.008     .2757103    1.795302
                170  |  -1.424787    .354999    -4.01   0.000    -2.120832   -.7287425
                171  |  -1.440129   .6296961    -2.29   0.022    -2.674771   -.2054866
                172  |  -1.746157   .7946426    -2.20   0.028    -3.304209   -.1881046
                173  |   1.252511   .4519663     2.77   0.006      .366343     2.13868
                174  |  -2.447693   .4634097    -5.28   0.000    -3.356298   -1.539088
                177  |  -.1312537   .5367133    -0.24   0.807    -1.183585    .9210775
                178  |  -4.038584   .4830392    -8.36   0.000    -4.985677   -3.091492
                179  |   .6399714   .9921774     0.65   0.519    -1.305386    2.585329
                180  |  -1.288933   .8616716    -1.50   0.135    -2.978409    .4005421
                181  |  -.8149166   .5740773    -1.42   0.156    -1.940507     .310674
                182  |  -4.036253   .7154661    -5.64   0.000    -5.439064   -2.633442
                183  |  -3.200952   .6051044    -5.29   0.000    -4.387377   -2.014526
                184  |  -2.288025   .6671227    -3.43   0.001    -3.596049   -.9800006
                186  |  -1.978696   1.149045    -1.72   0.085    -4.231623    .2742315
                187  |  -2.613136   .4520522    -5.78   0.000    -3.499472   -1.726799
                189  |     1.7873   .4297738     4.16   0.000     .9446449    2.629956
                190  |   .1055801   .4668761     0.23   0.821    -.8098216    1.020982
                191  |  -.3781044   .4878749    -0.78   0.438    -1.334678    .5784696
                192  |  -.4806792   .4803267    -1.00   0.317    -1.422453     .461095
                193  |  -1.816717   .5130359    -3.54   0.000    -2.822624   -.8108096
                194  |  -2.727731    .712251    -3.83   0.000    -4.124238   -1.331223
                195  |   -4.14129   1.161349    -3.57   0.000    -6.418341   -1.864238
                196  |  -2.708158   .7113404    -3.81   0.000     -4.10288   -1.313436
                197  |  -.8233869   .4508838    -1.83   0.068    -1.707433    .0606589
                198  |  -1.156681   .4823801    -2.40   0.017    -2.102482   -.2108807
                201  |  -1.271842   .3636068    -3.50   0.000    -1.984764   -.5589198
                202  |   .6101759   .3724992     1.64   0.102    -.1201815    1.340533
                203  |   -.885085   .4595703    -1.93   0.054    -1.786162    .0159924
                204  |  -2.963434   .6009257    -4.93   0.000    -4.141666   -1.785202
                205  |  -3.125539   .7509789    -4.16   0.000     -4.59798   -1.653099
                206  |  -3.012605   .4007951    -7.52   0.000    -3.798442   -2.226768
                207  |  -1.909917   1.130629    -1.69   0.091    -4.126735    .3069022
                208  |  -.9524388   .4410435    -2.16   0.031    -1.817191    -.087687
                211  |  -1.585325   .4488101    -3.53   0.000    -2.465305    -.705345
                212  |  -1.847104   .9326447    -1.98   0.048    -3.675736   -.0184716
                213  |  -4.254411   1.048533    -4.06   0.000    -6.310264   -2.198558
                215  |          0  (omitted)
                216  |  -2.841926   .4233694    -6.71   0.000    -3.672024   -2.011827
                217  |  -.9993264   .3588845    -2.78   0.005     -1.70299   -.2956633
                     |
               _cons |  -.9598844   3.157382    -0.30   0.761    -7.150549     5.23078
      --------------------------------------------------------------------------------
      But even this I am unsure of how to interpret sensibly. I feel quite out of my depth, and at this point am simply hoping to find a way to cut down the data or find a useful, statistically sensical method that I can present on, regardless of significance. Any advice appreciated.

      Comment


      • #4
        The first one tells you what's wrong
        Panel is unbalanced (or has missing values) for some observations. Will drop observations with missing values of Y_ for any time periods. If you wish to include these observations, provide staggered with a balanced data set with imputed outcomes.
        the final regression suggests that there's no group where a coup never happens and treat/post=1. This suggests to me that you have coded your treatment/ever_coup variable wrong

        Comment


        • #5
          I guess my first question is what function a balanced panel is serving in this context. Is it attempting to do a 1-1 match and cannot? If it is requiring the same number of obs. between the control and treatment groups, how would I go about selecting what obs. to drop? Would I simply drop countries without full Y observations? Would I use the largest countries by population? Is there an unbalanced matching command that I could use to refine the data before input for the analysis?

          Second, you are correct, there is no group where coup_evr = 0 and treat = 1, as I have coded treat = 1 for the year of and each year after a coup. This comes to my original problem of how I am meant to standardize the control group when timing is differential across the board. If treat must = 1 for some of the groups, how do I establish the proper date? Would this also be solved by matching on pre-trend controls? But then again, how do I establish what is pretrend? My problem seems a bit circular and I am not sure how to untangle it.

          Comment


          • #6
            I am trying to run a similar staggered DiD setup. Where I examine the effect of natural disasters on an outcome for US counties. In my design, a treated county will return to being a control, 5 years after it is being treated. Is there a way by which I can code this into any of the new set of estimators? I am very new to all this literature, hence any help would be greatly appreciated.

            Comment

            Working...
            X