I run this linear mixed model:
xtset id2 time
mixed sbp ib6.group##i.black_or_not i.stratum age ib2.sex dbp || id2: , cformat(%6.1fc)
margins i.group#i.black_or_not, cformat(%6.1fc)
This is the result:
How do I obtain p-values for specific group by race? For example, how do I get the p-value for Acebutolol#Not Black vs. Acebutolol#Black?
Your help will be appreciated. Thank you!
xtset id2 time
mixed sbp ib6.group##i.black_or_not i.stratum age ib2.sex dbp || id2: , cformat(%6.1fc)
margins i.group#i.black_or_not, cformat(%6.1fc)
This is the result:
HTML Code:
Mixed-effects ML regression Number of obs = 5,875 Group variable: id2 Number of groups = 890 Obs per group: min = 1 avg = 6.6 max = 7 Wald chi2(15) = 4687.69 Log likelihood = -21252.326 Prob > chi2 = 0.0000 --------------------------------------------------------------------------------------- sbp | Coefficient Std. err. z P>|z| [95% conf. interval] ----------------------+---------------------------------------------------------------- group | Acebutolol | -4.0 1.1 -3.79 0.000 -6.1 -1.9 Amlodipine | -4.3 1.0 -4.20 0.000 -6.4 -2.3 Chlorthalidone | -5.8 1.1 -5.47 0.000 -7.8 -3.7 Doxazosin | -2.2 1.0 -2.13 0.033 -4.2 -0.2 Enalapril | -3.1 1.0 -2.95 0.003 -5.1 -1.0 | black_or_not | Black | -0.5 1.4 -0.36 0.718 -3.2 2.2 | group#black_or_not | Acebutolol#Black | 2.8 2.3 1.20 0.230 -1.8 7.3 Amlodipine#Black | 0.5 2.7 0.20 0.838 -4.7 5.8 Chlorthalidone#Black | 4.8 2.3 2.11 0.035 0.3 9.2 Doxazosin#Black | 0.5 2.4 0.23 0.821 -4.1 5.2 Enalapril#Black | 3.8 2.3 1.65 0.098 -0.7 8.4 | 2.stratum | 0.3 0.6 0.42 0.674 -0.9 1.4 age | 0.6 0.0 12.21 0.000 0.5 0.6 | sex | Male | -2.9 0.6 -4.67 0.000 -4.1 -1.7 | dbp | 1.1 0.0 66.34 0.000 1.1 1.2 _cons | 9.3 3.0 3.06 0.002 3.4 15.3 --------------------------------------------------------------------------------------- ------------------------------------------------------------------------------ Random-effects parameters | Estimate Std. err. [95% conf. interval] -----------------------------+------------------------------------------------ id2: Identity | var(_cons) | 63.8 3.5 57.3 71.0 -----------------------------+------------------------------------------------ var(Residual) | 59.3 1.2 57.0 61.7 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 2430.37 Prob >= chibar2 = 0.0000 . margins i.group#i.black_or_not, cformat(%6.1fc) Predictive margins Number of obs = 5,875 Expression: Linear prediction, fixed portion, predict() ------------------------------------------------------------------------------------------- | Delta-method | Margin std. err. z P>|z| [95% conf. interval] --------------------------+---------------------------------------------------------------- group#black_or_not | Acebutolol#Not Black | 123.9 0.8 147.39 0.000 122.3 125.6 Acebutolol#Black | 126.2 1.6 76.64 0.000 123.0 129.4 Amlodipine#Not Black | 123.6 0.8 152.47 0.000 122.0 125.2 Amlodipine#Black | 123.6 2.2 57.03 0.000 119.4 127.9 Chlorthalidone#Not Black | 122.2 0.8 144.64 0.000 120.5 123.8 Chlorthalidone#Black | 126.4 1.6 80.70 0.000 123.3 129.5 Doxazosin#Not Black | 125.7 0.8 153.12 0.000 124.1 127.3 Doxazosin#Black | 125.8 1.8 71.67 0.000 122.3 129.2 Enalapril#Not Black | 124.8 0.8 149.91 0.000 123.2 126.5 Enalapril#Black | 128.2 1.7 76.12 0.000 124.9 131.5 Placebo#Not Black | 127.9 0.6 200.74 0.000 126.7 129.2 Placebo#Black | 127.4 1.2 102.83 0.000 125.0 129.9 -------------------------------------------------------------------------------------------
How do I obtain p-values for specific group by race? For example, how do I get the p-value for Acebutolol#Not Black vs. Acebutolol#Black?
Your help will be appreciated. Thank you!
Comment