Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Conditional (fixed-effect) logistic regression in Best Worst Scaling analysis

    Hello all,

    I'm running the Conditional (fixed-effect) logistic regression for Best Worst scaling analysis. The results are as below:

    1. clogit yvalue w t f s y,group(ncs)
    note: y omitted because of collinearity.
    note: multiple positive outcomes within groups encountered.
    note: 91 groups (1,820 obs) omitted because of all positive or
    all negative outcomes.

    Iteration 0: Log likelihood = -3669.8944
    Iteration 1: Log likelihood = -3668.3454
    Iteration 2: Log likelihood = -3668.345
    Iteration 3: Log likelihood = -3668.345

    Conditional (fixed-effects) logistic regression Number of obs = 26,980
    LR chi2(4) = 777.31
    Prob > chi2 = 0.0000
    Log likelihood = -3668.345 Pseudo R2 = 0.0958

    ------------------------------------------------------------------------------
    yvalue | Coefficient Std. err. z P>|z| [95% conf. interval]
    -------------+----------------------------------------------------------------
    w | .3210077 .0573404 5.60 0.000 .2086226 .4333928
    t | 1.468192 .0605694 24.24 0.000 1.349478 1.586906
    f | .259552 .0569483 4.56 0.000 .1479354 .3711686
    s | .6957712 .059394 11.71 0.000 .5793612 .8121813
    y | 0 (omitted)
    ------------------------------------------------------------------------------

    2. clogit yvalue c g e fo k n m p q,group(ncs)
    note: multiple positive outcomes within groups encountered.
    note: 91 groups (1,820 obs) omitted because of all positive or
    all negative outcomes.

    Iteration 0: Log likelihood = -2928.488
    Iteration 1: Log likelihood = -2913.7449
    Iteration 2: Log likelihood = -2913.7196
    Iteration 3: Log likelihood = -2913.7196

    Conditional (fixed-effects) logistic regression Number of obs = 26,980
    LR chi2(9) = 2286.56
    Prob > chi2 = 0.0000
    Log likelihood = -2913.7196 Pseudo R2 = 0.2818

    ------------------------------------------------------------------------------
    yvalue | Coefficient Std. err. z P>|z| [95% conf. interval]
    -------------+----------------------------------------------------------------
    c | .9311648 .0878287 10.60 0.000 .7590237 1.103306
    g | 3.009064 .1145599 26.27 0.000 2.784531 3.233598
    e | 3.168068 .1238748 25.57 0.000 2.925278 3.410858
    fo | 2.469387 .1009579 24.46 0.000 2.271513 2.667261
    k | 1.331987 .1059611 12.57 0.000 1.124307 1.539667
    n | 1.073204 .1035582 10.36 0.000 .8702334 1.276174
    m | .8097167 .1134727 7.14 0.000 .5873142 1.032119
    p | -.091148 .104598 -0.87 0.384 -.2961564 .1138603
    q | -1.115552 .1114767 -10.01 0.000 -1.334042 -.8970618
    .
    where w,t,f,s, and y are attributes; c,g,e,fo,k,n,m,p,q are levels in each attribute. My question is how can we interpret the meaning of Coefficient in both analyses? For example, coefficient of "W" is 0.32, "T" is 1.46.

    Thanks for your help.
    .
Working...
X