Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Fama Macbeth regression with weighted coefficients

    Hello statalist community

    I am trying to run the following regression in stata:
    Click image for larger version

Name:	Screenshot 2024-01-23 at 13.57.29.png
Views:	1
Size:	23.9 KB
ID:	1740859




    where the excess return (EXRET) is my dependent variable, a proxy for difference of opinion (INCVOL) and a proxy for institutional ownership (INSOWN) are my independent variables, and I am controlling for the size effect (LnMV) and the market to book effect (LnMB).
    i identifies the firm (permno) and q identifies the quarter (num_QUARTER).

    I am trying to estimate each model by the calendar year-quarter (num_QUARTER) and output the precision-weighted Fama and Macbeth (1973) coefficient estimates, where the weights correspond to the number of observations available in each num_QUARTER.

    Here is a sample of my data:

    Example generated by -dataex-. For more info, type help dataex
    clear
    input double permno float(num_QUARTER EXRET ln_MV ln_MB) double INCVOL float INSOWN
    10008 11 -3.613648 3.837628 .6660116 . 50.70855
    10008 9 2.3320007 3.935141 .8268394 . 29.77759
    10008 6 2.867223 3.898507 .8512741 . 34.233788
    10008 8 .4817073 3.788159 .7337805 . 36.70713
    10008 13 -.9682727 3.7018266 .4458091 . 44.39114
    10008 7 5.464943 3.522456 .4682188 . 43.14516
    10008 12 5.849236 3.432163 .2463477 . 51.50757
    10008 10 -1.7264075 3.788159 .59201974 . 42.59423
    10008 14 4.1000843 3.9286 .5639282 . 45.09671
    10010 39 3.996558 3.979242 1.7785792 3.243112060436777 20.236296
    10010 32 12.792796 4.535048 1.6222625 3.9632545293359813 8.989085
    10010 35 .9209003 3.903807 1.8974736 3.730587269986754 10.883036
    10010 12 -5.483268 2.555605 .6282953 . .3308768
    10010 30 -1.7342974 4.343682 1.4674653 . 7.709942
    10010 29 -5.497581 4.4030538 1.4837706 . 10.38042
    10010 11 2.9390564 2.385821 .4960281 . 9.4157
    10010 16 -2.424029 2.7355816 .6487922 . .7752287
    10010 41 5.316243 4.3014655 2.079982 3.143430414516524 12.29525
    10010 14 -4.1153455 2.859547 .8459778 . .4511957
    10010 21 17.96718 2.906968 .6482305 . 1.549211
    10010 25 -5.758246 4.707672 2.1232975 . 28.631784
    10010 36 3.8106065 4.067744 2.003289 3.5763718828762605 6.736435
    10010 27 4.899927 4.5394745 1.7059673 . 15.765204
    10010 17 -3.61082 3.019382 .8926992 . .6788278
    10010 28 -.9291086 4.6668105 1.7868258 . 11.099987
    10010 33 -7.396168 4.2913423 1.3862462 3.882547117782703 7.857353
    10010 38 -.49252 3.9549484 1.831729 3.340686017305362 16.595228
    10010 22 -6.025785 4.436899 2.093364 . 12.177193
    10010 42 -3.5942485 . . 3.2307917212785124 0
    10010 31 11.832273 4.154188 1.278648 4.205261673947921 7.944925
    10010 34 -1.1528807 4.011162 1.1025683 3.82539639632745 8.12151
    10010 37 3.75514 4.4388576 2.2043371 3.4520890957179944 12.125244
    10010 13 -3.490855 2.8352535 .8611723 . .3399007
    10010 26 -22.12851 4.855687 2.1711104 . 24.2808
    10010 40 -14.593055 3.996084 1.7676836 3.1438398217238763 12.346858
    10010 19 3.907184 2.623242 .4089416 . .9546611
    10010 20 4.5179973 2.7089984 .4877318 . 1.0325191
    10010 23 6.075223 3.926768 1.467436 . 8.285469
    10010 18 .3539547 2.9566655 .7894421 . 1.0134529
    10010 15 -3.5315084 2.7891355 .7392515 . .47340825
    10010 24 -1.8002476 4.501533 1.9816613 . 14.55777
    10011 51 -3.56842 4.446916 .5785106 2.334583952508747 14.916426
    10011 46 6.99464 4.776778 1.0684394 . 20.15268
    10011 37 -2.8352714 3.5961645 1.5601523 . 2.707788
    10011 44 3.627314 4.579211 .9194773 . 12.897806
    10011 42 -1.09913 4.455161 1.7652068 . 3.182189
    10011 38 -3.223763 4.1214304 2.0016873 . 2.7191024
    10011 50 -5.325699 4.463703 .6218236 2.4463803968178697 19.195
    10011 52 -.11500657 4.491021 .5861638 2.25453858594281 39.19349
    10011 47 -7.960851 4.6077433 .8482187 2.717672115669003 17.707294
    10011 36 3.944739 3.699705 1.7451184 . 2.3
    10011 41 3.076095 4.331108 1.7054982 . 2.8928895
    10011 40 -1.430903 4.5160847 1.9600986 . 2.913332
    10011 48 .23876584 4.4052424 .6102028 2.67519623302301 25.705116
    10011 43 7.620689 4.475688 1.6873487 . 5.335223
    10011 35 -13.390417 3.2955816 1.4056373 . 1.879015
    10011 49 -3.2104526 4.1643367 .3479661 2.532721266515545 34.033783
    10011 39 4.7234454 3.935095 1.64438 . 2.679057
    10015 4 -2.116692 3.6982975 1.1322718 . 7.276555
    10015 1 .2713797 2.975351 .7527837 . 8.153242
    10015 2 -.029075697 3.2543395 .836909 . 3.864492
    10015 3 -13.90464 3.461979 .9384125 . 15.327478
    10016 22 2.715161 6.139966 .3224233 . 0
    10016 31 .3153377 5.626577 -.3344666 .7665897111991958 0
    10016 60 2.0315082 5.812871 1.2374282 2.7224301578201575 72.10319
    10016 63 10.072694 5.704714 1.0895839 .6080836900541465 78.52301
    10016 15 5.258823 6.15718 .25509027 . .
    end
    [/CODE]

    For some quarters, data for INCVOL is missing, whilst for INSOWN, some quarters are missing and some are 0, by design.

    I have tried to run the following code, but I do not think it is correct:

    Code:
    xtset permno num_QUARTER
    egen NQTR = count(num_QUARTER) if !mi(EXRET , ln_MV ,ln_MB ,INCVOL ,INSOWN), by(num_QUARTER)
    foreach var in EXRET ln_MV ln_MB INCVOL INSOWN {
        g w`var' = `var'*sqrt(NQTR)
    }
    byso num_QUARTER: asreg wEXRET wln_MV wln_MB wINCVOL wINSOWN, fmb noconstant
    Would appreciate any input, thanks in advance.
    Last edited by Benedikt Dieker; 23 Jan 2024, 07:16.

  • #2
    Not exactly clear what's up here, but a thought.

    You're estimating by quarter using a N weight by quarter. It seems to me this might make more sense if you had a single regression producing a single set of coefficients, where the quarters with more data get weighted more heavily.

    I'm not sure what your getting by the byso num_QUARTER: asreg, unless you plan on aggregating in some way (and then, I'd estimate without the weight and use the weight in the aggregation).

    xtfmb is an option (ssc install xtfmb), which allows aweights

    Comment


    • #3
      appreciated, thanks.

      Comment

      Working...
      X