How do I standardize the BMI over age groups to create a BMI z score and then run a quantile regression?
This is the code i used for non-standardized BMI
Listed 100 out of 19421 observations
Use the count() option to list more
. dataex BMI treated age
----------------------- copy starting from the next line -----------------------
------------------ copy up to and including the previous line ------------------
Listed 100 out of 19421 observations
Use the count() option to list more
This is the code i used for non-standardized BMI
Code:
foreach c in 10 25 50 75 90{ bootstrap, reps(999) : rifhdreg BMI treated , rif(q(`i')) abs(HHPBASE SURVEY COTOTAL5 EW9 district_id#c.SURVEY) cluster(IDPSU) eststo q`i' }
Listed 100 out of 19421 observations
Use the count() option to list more
. dataex BMI treated age
----------------------- copy starting from the next line -----------------------
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(BMI treated) int age 23.17475 0 40 29.602175 0 33 25.46452 0 26 23.49591 0 33 24.63776 1 47 20.61365 1 42 16.829824 1 39 23.42016 1 56 16.97294 0 28 20.89844 0 35 30.0864 0 29 31.99797 1 36 28.358147 0 35 23.85799 0 42 21.52873 1 35 25.561056 1 42 21.99219 1 47 22.47699 0 40 19.98344 0 29 21.733334 0 22 25.13861 1 39 29.13409 1 53 20.148024 1 34 18.203485 0 27 21.77648 1 40 25.764605 0 33 29.29406 1 49 10.683762 1 34 26.414253 1 55 14.327621 1 48 23.6671 0 35 19.058865 0 28 21.426653 1 49 23.21406 1 52 25.7553 0 39 22.221287 0 25 26.074083 1 54 16.210938 1 42 19.51093 0 28 21.75343 0 21 22.852877 1 47 27.140844 1 46 24.06643 0 39 25.60617 1 45 23.15688 0 25 23.684183 0 30 21.395906 1 42 22.192595 1 47 15.231208 1 52 23.702597 1 43 21.55471 0 29 18.02873 1 35 19.060251 1 52 28.56713 0 43 29.56929 0 49 31.92075 0 33 29.38885 0 27 19.285105 1 52 20.625706 0 36 22.902575 0 29 17.975086 1 45 18.076817 0 36 22.96625 0 43 26.92532 1 50 25.838005 1 39 27.09817 1 51 21.5625 0 30 24.66638 0 34 21.91004 1 47 19.214306 1 52 26.074 1 47 21.515976 1 35 30.93434 1 45 31.52137 1 43 26.20687 1 50 21.11217 1 45 26.71052 0 37 25.190445 0 30 17.962257 0 26 24.156216 0 33 24.969816 1 45 24.221455 1 49 17.07068 1 55 21.5888 0 42 35.761723 1 49 25.01561 0 35 24.667496 0 42 18.897823 1 42 19.063108 1 45 28.56986 1 55 21.82271 1 50 23.4566 1 43 23.680254 1 42 23.51915 1 42 24.60118 1 35 39.59719 1 47 24.21429 1 42 28.983206 1 47 34.25031 1 45 27.985754 1 50 end
Listed 100 out of 19421 observations
Use the count() option to list more
Comment