Hello, I need to create the following graph attached in the file.
I am using the following code, but I'm getting the same output. Please help.
Thanks
* Calculate the mean and standard deviation of pm2p5_1
summarize pm2p5_1
* Store the mean and standard deviation in local macros
local mean = r(mean)
local sd = r(sd)
* Generate a new variable that is the z-score of pm2p5_1
generate pm2p5_1_z = (pm2p5_1 - `mean') / `sd'
* Assuming the variable names are mean_pm25 and height_zscore
scatter haz06 pm2p5_1_z, mcolor(blue) ///
|| lfit haz06 pm2p5_1_z, color(red) ///
legend(off) ///
xtitle("Mean PM2.5 in First Trimester (z-scores)") ///
ytitle("Height-for-age (z-scores)") ///
graphregion(color(white)) plotregion(color(white))
Data
. dataex pm2p5_1 haz06 , count(10000)
----------------------- copy starting from the next line -----------------------
------------------ copy up to and including the previous line ------------------
I am using the following code, but I'm getting the same output. Please help.
Thanks
* Calculate the mean and standard deviation of pm2p5_1
summarize pm2p5_1
* Store the mean and standard deviation in local macros
local mean = r(mean)
local sd = r(sd)
* Generate a new variable that is the z-score of pm2p5_1
generate pm2p5_1_z = (pm2p5_1 - `mean') / `sd'
* Assuming the variable names are mean_pm25 and height_zscore
scatter haz06 pm2p5_1_z, mcolor(blue) ///
|| lfit haz06 pm2p5_1_z, color(red) ///
legend(off) ///
xtitle("Mean PM2.5 in First Trimester (z-scores)") ///
ytitle("Height-for-age (z-scores)") ///
graphregion(color(white)) plotregion(color(white))
Data
. dataex pm2p5_1 haz06 , count(10000)
----------------------- copy starting from the next line -----------------------
Code:
* Example generated by -dataex-. For more info, type help dataex clear input double(pm2p5_1 haz06) 1.6778737739202506e-08 -3.49 2.5761926747588366e-08 -.58 3.859374875246417e-08 . 1.819043616940413e-08 . 3.859374875246417e-08 . 3.698110971155913e-08 . 3.4469341835663074e-08 -1.75 3.841774503319892e-08 -2.12 4.803728381241039e-08 -3.81 4.543198784672938e-08 . 4.426735082885306e-08 . 6.122811686980286e-08 -2.18 3.712600601223118e-08 -.77 3.625873919017026e-08 . 6.498681198965056e-08 . 5.145495222801459e-08 2.09 5.255860662586405e-08 -1.01 4.758344269982077e-08 . 5.114501055499233e-08 . 5.601563306496416e-08 . 6.415111758570791e-08 -3.13 6.228555041451614e-08 1.94 9.552010794502684e-08 -2.46 6.406260705040322e-08 . 5.326179061227599e-08 . 8.132716495040785e-08 . 5.0271151479973125e-08 -.78 6.102866354301077e-08 . 7.374746981504416e-08 -3.95 6.122811686980287e-08 -1.09 7.384696699641579e-08 . 1.1487645056854839e-07 -3.5500000000000003 8.485802197638887e-08 . 7.583054557352149e-08 . 9.491302229435484e-08 -1.47 6.048887733288531e-08 . 7.148759711066307e-08 -2.22 6.614322169520612e-08 -3.4 1.339637064420123e-07 .09 7.733205477908988e-08 -2.08 1.0468778182392478e-07 -2.5100000000000002 5.2692887116039425e-08 . 4.958076682029569e-08 . 7.041977874668458e-08 . 6.423788855689965e-08 . 5.977532869937277e-08 . 5.638540142396955e-08 -.09 9.546549088844083e-08 . 1.1397622335304663e-07 . 1.0359917767377112e-07 1.48 9.546549088844083e-08 -1.7 6.838571706003582e-08 -2.33 9.14790297943548e-08 . 9.836159149529566e-08 . 6.20740347141577e-08 .05 6.901679891932283e-08 . 6.370377943848567e-08 1.03 8.627983146998207e-08 . 8.956671601120073e-08 . 6.54025045327061e-08 -1.98 6.857735384408599e-08 . 1.2014637863088617e-07 -1.8800000000000001 5.5229553049014354e-08 . 7.799490974986557e-08 -.59 7.52193242437724e-08 -1.48 7.342280557616488e-08 1.23 5.38508246747312e-08 -1.77 4.23154202830197e-08 . 4.9629372968189946e-08 . 5.351488620675751e-08 -3.2800000000000002 9.534384819225065e-08 . 6.375695234408602e-08 -.98 5.731062955017922e-08 -2.17 4.722731176008066e-08 . 1.3529075801492402e-07 . 6.769242914650538e-08 -1.06 6.609835613530467e-08 . 5.240379229023296e-08 -4.64 4.318707687589603e-08 . 8.595055649381721e-08 -.05 7.641571848745519e-08 -1.25 1.207120124833148e-07 -2.06 6.490122866129033e-08 -2.12 6.298224775806453e-08 -1.16 5.601563306496416e-08 -2.96 1.1486119639112905e-07 . 7.074180502556965e-08 . 5.918849191845879e-08 -2.41 1.0048808145564521e-07 -.91 8.35183240972222e-08 .02 1.4477506037679215e-07 -2.14 1.0777452306067591e-07 -3.09 6.51309560594086e-08 -1.55 1.4853359901785712e-07 -1.81 1.6267349088805686e-07 .17 1.33457130209492e-07 . 9.7104709297043e-08 . 7.860276151299282e-08 -1.46 1.6873756619802863e-07 . 8.505465373969533e-08 . 5.370975674386201e-08 . 7.050705087797617e-08 . 8.286659947087811e-08 -3.12 6.631136389560932e-08 -2.14 1.564143698027074e-07 -4.55 1.209613991063172e-07 -1.31 1.9852775537186372e-07 . 2.07123064016129e-07 . 9.103217491621862e-08 -.8 1.9588393606950844e-07 2.49 1.1666867141935484e-07 2.21 1.2167696436005503e-07 -.81 9.96815298315412e-08 . 1.2140511884274196e-07 . 1.5261345484350995e-07 -1.61 9.700851689336917e-08 -1.71 9.346396765367384e-08 .42 1.4286187840437785e-07 . 1.386947679521889e-07 . 1.739770722956989e-07 -1.79 1.34942029561828e-07 -3.04 1.2067244166935484e-07 -3.0300000000000002 1.4963949151676907e-07 . 1.9779472060915912e-07 . 8.611324152638888e-08 .18 1.2501986193772399e-07 -.12 9.686271691218634e-08 -1.21 1.496394915167691e-07 2.48 9.162911097318865e-08 . 7.547076648682794e-08 . 1.0600463655107523e-07 . 9.65924885481631e-08 . 8.945314715143365e-08 -2.0100000000000002 end
Comment