Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Variance of random effect in Twolevel multinomial logistic regression using the gsem

    Hi I am running a multilevel multinomial model where the effect is assumed to be equal across the outcome categories. I see that changing the reference category in the outcome variable affects the variance estimate of the random effect? I expected that the variance should have stayed unchanged because the underlying random effects structure, including the variance of these effects, is not directly related to how the outcome categories are coded. Here is an example using the Stata Example 41g.
    Code:
     use https://www.stata-press.com/data/r18/gsem_lineup, clear
    (Fictional suspect identification data)
    
    . gsem (ib1.chosen <- i.location i.suswhite i.witmale i.violent M1[suspect]@1),mlogit
    
    Fitting fixed-effects model:
    
    Iteration 0:  Log likelihood = -6914.9098  
    Iteration 1:  Log likelihood = -6696.7136  
    Iteration 2:  Log likelihood = -6694.0006  
    Iteration 3:  Log likelihood = -6693.9974  
    Iteration 4:  Log likelihood = -6693.9974  
    
    Refining starting values:
    
    Grid node 0:  Log likelihood = -6705.0919
    
    Fitting full model:
    
    Iteration 0:  Log likelihood = -6705.0919  (not concave)
    Iteration 1:  Log likelihood = -6654.5724  
    Iteration 2:  Log likelihood = -6653.5717  
    Iteration 3:  Log likelihood = -6653.5671  
    Iteration 4:  Log likelihood = -6653.5671  
    
    Generalized structural equation model                    Number of obs = 6,535
    Response:     chosen     
    Base outcome: 1          
    Family:       Multinomial
    Link:         Logit      
    Log likelihood = -6653.5671
    
     ( 1)  [2.chosen]M1[suspect] = 1
     ( 2)  [3.chosen]M1[suspect] = 1
    ----------------------------------------------------------------------------------
                     | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -----------------+----------------------------------------------------------------
    1.chosen         |  (base outcome)
    -----------------+----------------------------------------------------------------
    2.chosen         |
            location |
            Suite_1  |   .3867066   .1027161     3.76   0.000     .1853868    .5880264
            Suite_2  |   .4915675   .0980312     5.01   0.000     .2994299    .6837051
                     |
          1.suswhite |  -.0275501   .0751664    -0.37   0.714    -.1748736    .1197734
           1.witmale |  -.0001844   .0680803    -0.00   0.998    -.1336193    .1332505
           1.violent |   .0356477   .0773658     0.46   0.645    -.1159864    .1872819
                     |
         M1[suspect] |          1  (constrained)
                     |
               _cons |  -1.002334    .099323   -10.09   0.000    -1.197003   -.8076643
    -----------------+----------------------------------------------------------------
    3.chosen         |
            location |
            Suite_1  |  -.2832042   .0936358    -3.02   0.002    -.4667271   -.0996814
            Suite_2  |   .1391796   .0863473     1.61   0.107    -.0300581    .3084172
                     |
          1.suswhite |  -.2397561   .0643075    -3.73   0.000    -.3657965   -.1137158
           1.witmale |   .1419285    .059316     2.39   0.017     .0256712    .2581857
           1.violent |  -1.376579   .0885126   -15.55   0.000     -1.55006   -1.203097
                     |
         M1[suspect] |          1  (constrained)
                     |
               _cons |   .1781047   .0833393     2.14   0.033     .0147627    .3414468
    -----------------+----------------------------------------------------------------
     var(M1[suspect])|   .2538014   .0427302                      .1824673    .3530228
    ----------------------------------------------------------------------------------
    
    . gsem (ib2.chosen <- i.location i.suswhite i.witmale i.violent M1[suspect]@1),mlogit
    
    Fitting fixed-effects model:
    
    Iteration 0:  Log likelihood = -6914.9098  
    Iteration 1:  Log likelihood = -6696.7136  
    Iteration 2:  Log likelihood = -6694.0006  
    Iteration 3:  Log likelihood = -6693.9974  
    Iteration 4:  Log likelihood = -6693.9974  
    
    Refining starting values:
    
    Grid node 0:  Log likelihood = -6769.1458
    
    Fitting full model:
    
    Iteration 0:  Log likelihood = -6769.1458  (not concave)
    Iteration 1:  Log likelihood = -6698.9501  
    Iteration 2:  Log likelihood = -6691.9396  
    Iteration 3:  Log likelihood = -6691.8455  
    Iteration 4:  Log likelihood = -6691.8454  
    
    Generalized structural equation model                    Number of obs = 6,535
    Response:     chosen     
    Base outcome: 2          
    Family:       Multinomial
    Link:         Logit      
    Log likelihood = -6691.8454
    
     ( 1)  [1.chosen]M1[suspect] = 1
     ( 2)  [3.chosen]M1[suspect] = 1
    ----------------------------------------------------------------------------------
                     | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -----------------+----------------------------------------------------------------
    1.chosen         |
            location |
            Suite_1  |  -.4046607    .090224    -4.49   0.000    -.5814966   -.2278249
            Suite_2  |  -.4807425    .086508    -5.56   0.000    -.6502951   -.3111899
                     |
          1.suswhite |   .0122528   .0738115     0.17   0.868    -.1324151    .1569207
           1.witmale |   .0046052   .0668948     0.07   0.945    -.1265061    .1357166
           1.violent |  -.0697393   .0756255    -0.92   0.356    -.2179626     .078484
                     |
         M1[suspect] |          1  (constrained)
                     |
               _cons |   1.050988    .093792    11.21   0.000     .8671586    1.234817
    -----------------+----------------------------------------------------------------
    2.chosen         |  (base outcome)
    -----------------+----------------------------------------------------------------
    3.chosen         |
            location |
            Suite_1  |  -.6720046   .0957872    -7.02   0.000    -.8597441   -.4842652
            Suite_2  |  -.3602381   .0888463    -4.05   0.000    -.5343736   -.1861025
                     |
          1.suswhite |  -.2113822   .0762218    -2.77   0.006    -.3607741   -.0619902
           1.witmale |   .1427508   .0700491     2.04   0.042     .0054571    .2800445
           1.violent |  -1.418136   .0972193   -14.59   0.000    -1.608682    -1.22759
                     |
         M1[suspect] |          1  (constrained)
                     |
               _cons |   1.200875   .0959175    12.52   0.000      1.01288    1.388869
    -----------------+----------------------------------------------------------------
     var(M1[suspect])|   .0680095   .0366291                      .0236659    .1954412
    ----------------------------------------------------------------------------------
    
    . gsem (ib3.chosen <- i.location i.suswhite i.witmale i.violent M1[suspect]@1),mlogit
    
    Fitting fixed-effects model:
    
    Iteration 0:  Log likelihood = -6914.9098  
    Iteration 1:  Log likelihood = -6696.7136  
    Iteration 2:  Log likelihood = -6694.0006  
    Iteration 3:  Log likelihood = -6693.9974  
    Iteration 4:  Log likelihood = -6693.9974  
    
    Refining starting values:
    
    Grid node 0:  Log likelihood =  -6745.852
    
    Fitting full model:
    
    Iteration 0:  Log likelihood =  -6745.852  (not concave)
    Iteration 1:  Log likelihood =  -6680.816  
    Iteration 2:  Log likelihood = -6678.6144  
    Iteration 3:  Log likelihood = -6677.3669  
    Iteration 4:  Log likelihood = -6677.3577  
    Iteration 5:  Log likelihood = -6677.3577  
    
    Generalized structural equation model                    Number of obs = 6,535
    Response:     chosen     
    Base outcome: 3          
    Family:       Multinomial
    Link:         Logit      
    Log likelihood = -6677.3577
    
     ( 1)  [1.chosen]M1[suspect] = 1
     ( 2)  [2.chosen]M1[suspect] = 1
    ----------------------------------------------------------------------------------
                     | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -----------------+----------------------------------------------------------------
    1.chosen         |
            location |
            Suite_1  |   .2910483   .0874102     3.33   0.001     .1197274    .4623692
            Suite_2  |  -.1175012   .0800743    -1.47   0.142    -.2744438    .0394415
                     |
          1.suswhite |   .2381603   .0636875     3.74   0.000     .1133352    .3629855
           1.witmale |  -.1319328   .0587295    -2.25   0.025    -.2470404   -.0168252
           1.violent |   1.381567    .088094    15.68   0.000     1.208906    1.554228
                     |
         M1[suspect] |          1  (constrained)
                     |
               _cons |   -.149959   .0795696    -1.88   0.059    -.3059126    .0059947
    -----------------+----------------------------------------------------------------
    2.chosen         |
            location |
            Suite_1  |   .6910407   .1023064     6.75   0.000     .4905239    .8915576
            Suite_2  |   .3535532    .094723     3.73   0.000     .1678995    .5392069
                     |
          1.suswhite |   .2252813   .0769533     2.93   0.003     .0744556    .3761071
           1.witmale |   -.142911   .0706668    -2.02   0.043    -.2814154   -.0044067
           1.violent |   1.444709   .0982176    14.71   0.000     1.252206    1.637212
                     |
         M1[suspect] |          1  (constrained)
                     |
               _cons |  -1.174468    .098238   -11.96   0.000    -1.367011    -.981925
    -----------------+----------------------------------------------------------------
    3.chosen         |  (base outcome)
    -----------------+----------------------------------------------------------------
     var(M1[suspect])|   .1614845   .0373815                      .1025863    .2541981
    ----------------------------------------------------------------------------------
    You see the variance estimates change from
    Code:
      var(M1[suspect])|   .2538014
    to
    Code:
    var(M1[suspect])|   .0680095
    and
    Code:
    var(M1[suspect])|   .1614845
    as the reference category changes from 1 to 2 and to 3. Is this something expected especially given it is a model with shared random effects? Does it have something to do with the assumption that changing the reference category of the outcome variable implies dropping the reference category from the model (i.e., the variance estimate is only for the two categories included in the model )? In such case how do you conclude about the effect size due to the change in standard deviation of the random effect (sqrt(0.254) is bigger than sqrt(0.068)?.

    Thank you for your input.
Working...
X