I am using restricted survey data for my dissertation and I am fairly new to stata. I am trying to combine two categorical variables that are the following format:
VarA
0 = no
1 = yes
6 = missing
9 = not stated
VarB
0 = not
1 = yes
6 = missing
9 = not stated
I want to combine them into VarC where:
0 = all instances where they said no (0) to VarA and/or VarB
1 = all instances where they said yes (1) to VarA and/or VarB
6 = all missing (6) or not stated(9)
The issue I'm having is that in a few circumstances, respondents answered no to both questions, so when I combine the variables, Stata will only count those frequencies once. Is there a way to count all the frequencies, despite them coming from the same respondent? I have asked several people, and consulted A Gentle Introduction to Stata, countless forum posts and the help command but cannot find an answer.
I have provided my syntax, sample data and frequency tables below. Feel free to let me know if you require anything else (like I said I'm new to this, so I referenced the guidelines but happy to learn etiquette).
Here is a copy of my dofile:
I have provided a fake dataset below (produced with Stata 18 but in the lab I use Stata 16)
Here are copies of my cross tabs and frequency tables for reference as well:
VarB
VarA
0 = no
1 = yes
6 = missing
9 = not stated
VarB
0 = not
1 = yes
6 = missing
9 = not stated
I want to combine them into VarC where:
0 = all instances where they said no (0) to VarA and/or VarB
1 = all instances where they said yes (1) to VarA and/or VarB
6 = all missing (6) or not stated(9)
The issue I'm having is that in a few circumstances, respondents answered no to both questions, so when I combine the variables, Stata will only count those frequencies once. Is there a way to count all the frequencies, despite them coming from the same respondent? I have asked several people, and consulted A Gentle Introduction to Stata, countless forum posts and the help command but cannot find an answer.
I have provided my syntax, sample data and frequency tables below. Feel free to let me know if you require anything else (like I said I'm new to this, so I referenced the guidelines but happy to learn etiquette).
Here is a copy of my dofile:
Code:
generate noharm =1 if VarA ==0 generate harm =1 if VarA ==1 generate cs6 =1 if VarA ==6 generate cs9 =1 if VarA ==9 generate exnoharm =1 if VarB ==0 generate exharm =1 if VarB ==1 generate ex6 =1 if VarB ==6 generate ex9 =1 if VarB ==9 gen VarC = 0 replace VarC =0 if noharm ==1 & exnoharm ==1 replace VarC =0 if noharm ==1 & ex6 ==1 replace VarC =0 if noharm ==1 & ex9 ==1 replace VarC =0 if noharm ==1 & exnoharm ==1 replace VarC =0 if cs6 ==1 & exnoharm ==1 replace VarC =0 if cs9 ==1 & exnoharm ==1 replace VarC =1 if harm ==1 & exharm ==1 replace VarC =1 if harm ==1 & ex6 ==1 replace VarC =1 if harm ==1 & ex9 ==1 replace VarC =1 if harm ==1 & exharm ==1 replace VarC =1 if cs6 ==1 & exharm ==1 replace VarC =1 if cs9 ==1 & exharm ==1 replace VarC =6 if cs6 ==1 & ex6 ==1 replace VarC =6 if cs6 ==1 & ex9 ==1 replace VarC =6 if cs9 ==1 & ex6 ==1 replace VarC =6 if cs9 ==1 & ex9 ==1
I have provided a fake dataset below (produced with Stata 18 but in the lab I use Stata 16)
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(VarA VarB id noharm harm cs6 cs9 exnoharm exharm ex6 ex9 VarC) 0 0 1 1 . . . 1 . . . 0 0 0 2 1 . . . 1 . . . 0 6 0 3 . . 1 . 1 . . . 0 6 0 4 . . 1 . 1 . . . 0 6 0 5 . . 1 . 1 . . . 0 6 0 6 . . 1 . 1 . . . 0 6 0 7 . . 1 . 1 . . . 0 6 0 8 . . 1 . 1 . . . 0 6 0 9 . . 1 . 1 . . . 0 6 0 10 . . 1 . 1 . . . 0 6 0 11 . . 1 . 1 . . . 0 6 0 12 . . 1 . 1 . . . 0 6 0 13 . . 1 . 1 . . . 0 6 0 14 . . 1 . 1 . . . 0 6 0 15 . . 1 . 1 . . . 0 6 0 16 . . 1 . 1 . . . 0 6 0 17 . . 1 . 1 . . . 0 6 0 18 . . 1 . 1 . . . 0 6 0 19 . . 1 . 1 . . . 0 6 0 20 . . 1 . 1 . . . 0 6 0 21 . . 1 . 1 . . . 0 6 0 22 . . 1 . 1 . . . 0 6 0 23 . . 1 . 1 . . . 0 6 0 24 . . 1 . 1 . . . 0 6 0 25 . . 1 . 1 . . . 0 6 0 26 . . 1 . 1 . . . 0 6 0 27 . . 1 . 1 . . . 0 1 6 28 . 1 . . . . 1 . 1 6 0 29 . . 1 . 1 . . . 0 6 0 30 . . 1 . 1 . . . 0 9 1 31 . . . 1 . 1 . . 1 6 1 32 . . 1 . . 1 . . 1 6 1 33 . . 1 . . 1 . . 1 6 1 34 . . 1 . . 1 . . 1 6 1 35 . . 1 . . 1 . . 1 0 6 36 1 . . . . . 1 . 0 0 6 37 1 . . . . . 1 . 0 0 6 38 1 . . . . . 1 . 0 0 6 39 1 . . . . . 1 . 0 0 6 40 1 . . . . . 1 . 0 0 6 41 1 . . . . . 1 . 0 0 6 42 1 . . . . . 1 . 0 0 6 43 1 . . . . . 1 . 0 0 6 44 1 . . . . . 1 . 0 0 6 45 1 . . . . . 1 . 0 0 6 46 1 . . . . . 1 . 0 0 6 47 1 . . . . . 1 . 0 0 6 48 1 . . . . . 1 . 0 0 6 49 1 . . . . . 1 . 0 0 6 50 1 . . . . . 1 . 0 0 6 51 1 . . . . . 1 . 0 0 6 52 1 . . . . . 1 . 0 0 6 53 1 . . . . . 1 . 0 6 6 54 . . 1 . . . 1 . 6 6 6 55 . . 1 . . . 1 . 6 6 6 56 . . 1 . . . 1 . 6 6 6 57 . . 1 . . . 1 . 6 6 6 58 . . 1 . . . 1 . 6 6 6 59 . . 1 . . . 1 . 6 6 6 60 . . 1 . . . 1 . 6 6 6 61 . . 1 . . . 1 . 6 6 6 62 . . 1 . . . 1 . 6 6 6 63 . . 1 . . . 1 . 6 6 6 64 . . 1 . . . 1 . 6 6 6 65 . . 1 . . . 1 . 6 6 6 66 . . 1 . . . 1 . 6 6 6 67 . . 1 . . . 1 . 6 6 6 68 . . 1 . . . 1 . 6 6 6 69 . . 1 . . . 1 . 6 6 6 70 . . 1 . . . 1 . 6 6 6 71 . . 1 . . . 1 . 6 6 6 72 . . 1 . . . 1 . 6 6 6 73 . . 1 . . . 1 . 6 6 6 74 . . 1 . . . 1 . 6 6 6 75 . . 1 . . . 1 . 6 6 6 76 . . 1 . . . 1 . 6 6 6 77 . . 1 . . . 1 . 6 6 6 78 . . 1 . . . 1 . 6 6 6 79 . . 1 . . . 1 . 6 6 6 80 . . 1 . . . 1 . 6 6 6 81 . . 1 . . . 1 . 6 6 6 82 . . 1 . . . 1 . 6 6 6 83 . . 1 . . . 1 . 6 6 6 84 . . 1 . . . 1 . 6 6 6 85 . . 1 . . . 1 . 6 6 6 86 . . 1 . . . 1 . 6 6 6 87 . . 1 . . . 1 . 6 6 6 88 . . 1 . . . 1 . 6 6 6 89 . . 1 . . . 1 . 6 6 6 90 . . 1 . . . 1 . 6 6 6 91 . . 1 . . . 1 . 6 6 6 92 . . 1 . . . 1 . 6 6 6 93 . . 1 . . . 1 . 6 6 6 94 . . 1 . . . 1 . 6 6 6 95 . . 1 . . . 1 . 6 6 6 96 . . 1 . . . 1 . 6 6 6 97 . . 1 . . . 1 . 6 6 6 98 . . 1 . . . 1 . 6 6 6 99 . . 1 . . . 1 . 6 6 6 100 . . 1 . . . 1 . 6 6 6 101 . . 1 . . . 1 . 6 6 6 102 . . 1 . . . 1 . 6 6 6 103 . . 1 . . . 1 . 6 6 6 104 . . 1 . . . 1 . 6 6 6 105 . . 1 . . . 1 . 6 6 6 106 . . 1 . . . 1 . 6 6 6 107 . . 1 . . . 1 . 6 6 6 108 . . 1 . . . 1 . 6 6 6 109 . . 1 . . . 1 . 6 6 6 110 . . 1 . . . 1 . 6 6 6 111 . . 1 . . . 1 . 6 6 6 112 . . 1 . . . 1 . 6 6 6 113 . . 1 . . . 1 . 6 6 6 114 . . 1 . . . 1 . 6 6 6 115 . . 1 . . . 1 . 6 6 6 116 . . 1 . . . 1 . 6 6 6 117 . . 1 . . . 1 . 6 6 6 118 . . 1 . . . 1 . 6 6 6 119 . . 1 . . . 1 . 6 6 6 120 . . 1 . . . 1 . 6 6 6 121 . . 1 . . . 1 . 6 6 6 122 . . 1 . . . 1 . 6 6 6 123 . . 1 . . . 1 . 6 6 6 124 . . 1 . . . 1 . 6 6 6 125 . . 1 . . . 1 . 6 6 6 126 . . 1 . . . 1 . 6 6 6 127 . . 1 . . . 1 . 6 6 6 128 . . 1 . . . 1 . 6 6 6 129 . . 1 . . . 1 . 6 6 6 130 . . 1 . . . 1 . 6 6 6 131 . . 1 . . . 1 . 6 6 6 132 . . 1 . . . 1 . 6 6 6 133 . . 1 . . . 1 . 6 6 6 134 . . 1 . . . 1 . 6 6 6 135 . . 1 . . . 1 . 6 6 6 136 . . 1 . . . 1 . 6 6 6 137 . . 1 . . . 1 . 6 6 6 138 . . 1 . . . 1 . 6 6 6 139 . . 1 . . . 1 . 6 6 6 140 . . 1 . . . 1 . 6 6 6 141 . . 1 . . . 1 . 6 6 6 142 . . 1 . . . 1 . 6 6 6 143 . . 1 . . . 1 . 6 6 6 144 . . 1 . . . 1 . 6 6 6 145 . . 1 . . . 1 . 6 6 6 146 . . 1 . . . 1 . 6 6 6 147 . . 1 . . . 1 . 6 6 6 148 . . 1 . . . 1 . 6 6 6 149 . . 1 . . . 1 . 6 6 6 150 . . 1 . . . 1 . 6 6 6 151 . . 1 . . . 1 . 6 6 6 152 . . 1 . . . 1 . 6 6 6 153 . . 1 . . . 1 . 6 6 6 154 . . 1 . . . 1 . 6 6 6 155 . . 1 . . . 1 . 6 6 6 156 . . 1 . . . 1 . 6 6 6 157 . . 1 . . . 1 . 6 6 6 158 . . 1 . . . 1 . 6 6 6 159 . . 1 . . . 1 . 6 6 6 160 . . 1 . . . 1 . 6 6 6 161 . . 1 . . . 1 . 6 6 6 162 . . 1 . . . 1 . 6 6 6 163 . . 1 . . . 1 . 6 6 6 164 . . 1 . . . 1 . 6 6 6 165 . . 1 . . . 1 . 6 6 6 166 . . 1 . . . 1 . 6 6 6 167 . . 1 . . . 1 . 6 6 6 168 . . 1 . . . 1 . 6 6 6 169 . . 1 . . . 1 . 6 6 6 170 . . 1 . . . 1 . 6 6 6 171 . . 1 . . . 1 . 6 6 6 172 . . 1 . . . 1 . 6 6 6 173 . . 1 . . . 1 . 6 6 6 174 . . 1 . . . 1 . 6 6 6 175 . . 1 . . . 1 . 6 6 6 176 . . 1 . . . 1 . 6 6 6 177 . . 1 . . . 1 . 6 6 6 178 . . 1 . . . 1 . 6 6 6 179 . . 1 . . . 1 . 6 6 6 180 . . 1 . . . 1 . 6 6 6 181 . . 1 . . . 1 . 6 6 6 182 . . 1 . . . 1 . 6 6 6 183 . . 1 . . . 1 . 6 6 6 184 . . 1 . . . 1 . 6 6 6 185 . . 1 . . . 1 . 6 6 6 186 . . 1 . . . 1 . 6 6 6 187 . . 1 . . . 1 . 6 6 6 188 . . 1 . . . 1 . 6 6 6 189 . . 1 . . . 1 . 6 6 6 190 . . 1 . . . 1 . 6 6 6 191 . . 1 . . . 1 . 6 6 6 192 . . 1 . . . 1 . 6 6 6 193 . . 1 . . . 1 . 6 6 6 194 . . 1 . . . 1 . 6 6 6 195 . . 1 . . . 1 . 6 6 6 196 . . 1 . . . 1 . 6 6 6 197 . . 1 . . . 1 . 6 6 6 198 . . 1 . . . 1 . 6 6 6 199 . . 1 . . . 1 . 6 6 6 200 . . 1 . . . 1 . 6 6 6 201 . . 1 . . . 1 . 6 6 6 202 . . 1 . . . 1 . 6 6 6 203 . . 1 . . . 1 . 6 6 6 204 . . 1 . . . 1 . 6 6 6 205 . . 1 . . . 1 . 6 6 6 206 . . 1 . . . 1 . 6 6 6 207 . . 1 . . . 1 . 6 6 6 208 . . 1 . . . 1 . 6 6 6 209 . . 1 . . . 1 . 6 6 6 210 . . 1 . . . 1 . 6 6 6 211 . . 1 . . . 1 . 6 6 6 212 . . 1 . . . 1 . 6 6 6 213 . . 1 . . . 1 . 6 6 6 214 . . 1 . . . 1 . 6 6 6 215 . . 1 . . . 1 . 6 6 6 216 . . 1 . . . 1 . 6 6 6 217 . . 1 . . . 1 . 6 6 6 218 . . 1 . . . 1 . 6 6 6 219 . . 1 . . . 1 . 6 9 9 220 . . . 1 . . . 1 6 end
VarB
VarA | 0 | 1 | 6 | 9 | Total |
0 | 2 | 0 | 18 | 0 | 20 |
1 | 0 | 0 | 1 | 0 | 1 |
6 | 27 | 4 | 166 | 0 | 197 |
9 | 0 | 1 | 0 | 1 | 2 |
Total | 29 | 5 | 185 | 1 | 220 |
VarC | Freq. | Percent | Cum. |
0 | 47 | 21.36 | 21.36 |
1 | 6 | 2.73 | 24.09 |
6 | 167 | 75.91 | 100.00 |
Total | 220 | 100 | |
Comment