Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • How should I solve the problem of missing p-values, confidence intervals, and t-values for some of the parameters in the regression results

    Hello,

    I have fishery data by vessels (i.e. firms) and trips ( i.e. trips made to the sea to catch fishes). In this sample, there are 8 vessels, with a total of 1261 trips. These trips took place between 2001 and 2019 for a total of 19 years. In a given year a vessel (i.e., a firm) can make several trips.

    Each vessel represents a firm, and the vessel variable is named "Firm" in my dataset. The dataset is identified by two key variables: "Firm" and "Trip."

    In this dataset, I have information about the prices of three different fish species caught by these vessels written as price_1, price_2, and price_3, capital used for each trip registered as capital and Year variable, and the total revenue gained from selling these three fish species for each vessel and trip.
    All the variables vary by vessel ( firm) and Trip.


    I have used the "dataex" command to display the first 30 observations of this sample dataset. Below you can see the variables of interest for the first 30 observations of my dataset.



    dataex Firm Trip year Capital Price_1 Price_2 Price_3 TotalRevenue Totalrevenue_div_price_1 ln_Totalrevenue_div_price_1 in 1/30

    ----------------------- copy starting from the next line -----------------------
    [CODE]
    * Example generated by -dataex-. For more info, type help dataex
    clear

    input long Firm float(Trip year) int Capital double Price_1 float Price_2 double(Price_3 TotalRevenue) float(Totalrevenue_div_price_1 ln_Totalrevenue_div_price_1)
    1990004501 257 2001 1559 5.469641916437395 10.923235 1.3090858459472656 7877810.152981914 1440279 14.180347
    1990004501 265 2001 1559 5.469641916437395 10.311555 1.3090858459472656 8087359.777981914 1478590.4 14.2066
    1990004501 4 2001 1559 3.8147547341003065 10.377046 1.3090858459472656 8223249.563577672 2155643 14.5836
    1990004501 273 2001 1559 5.469641916437395 10.586683 1.3090858459472656 7784215.527981914 1423167.3 14.168395
    1990004501 80 2001 1559 5.469641916437395 10.377046 1.2513922717778807 7513275.849919865 1373632 14.13297
    1990004501 160 2001 1559 5.469641916437395 10.377046 1.3090857881949458 7087651.027981914 1295816.3 14.074652
    1987003408 277 2001 2181 6.145504215642849 10.513448 1.2102010250091553 8831620.131975446 1437086.4 14.178128
    1987003408 58 2001 2181 6.145504215642849 10.3646 1.2114313752096442 8927751.182878688 1452729 14.188954
    1987003408 140 2001 2181 6.145504215642849 10.3646 1.2102010686355984 8319637.381975447 1353776.3 14.118408
    1990004501 40 2001 1559 5.469641916437395 10.377046 1.310155227830855 7281510.755808509 1331259 14.101636
    1987003408 102 2001 2181 6.145504215642849 10.3646 1.144262752428504 8711770.586418048 1417584.4 14.164465
    1987003408 30 2001 2181 6.145504215642849 10.3646 1.1935991754736714 8241539.064098619 1341068 14.108977
    1987003408 82 2001 2181 6.145504215642849 10.3646 1.1601555762542333 8718536.306050256 1418685.3 14.16524
    1979006694 84 2001 458 5.221693527642477 9.23322 3.3233383622128017 3836800.407281849 734780.9 13.507328
    1990004501 60 2001 1559 5.469641916437395 10.377046 1.2812073987762707 7687143.22158874 1405420 14.155847
    1979006694 66 2001 458 5.221693527642477 9.23322 4.603591692273926 3996239.2853910658 765314.8 13.548042
    1987003408 146 2001 2181 6.011194541023049 10.3646 1.2102010250091553 8950989.906164631 1489053.5 14.213652
    1987003408 41 2001 2181 6.145504215642849 10.3646 1.2907081870606796 8500836.39537295 1383261 14.139955
    1990004501 72 2001 1559 5.469641916437395 10.377046 1.2605326621060873 7640762.367082128 1396940 14.149795
    1990004501 263 2001 1559 5.469641916437395 10.449423 1.3090858459472656 7811639.027981914 1428181 14.171912
    1990004501 171 2001 1559 5.535629421373175 10.377046 1.3090858459472656 7922497.462540114 1431182.8 14.174012
    1987003408 305 2001 2181 6.145504215642849 10.3646 1.2102010686355984 8319637.381975447 1353776.3 14.118408
    1990004501 313 2001 1559 5.469641916437395 10.377046 1.3090857881949458 7087651.027981914 1295816.3 14.074652
    1990004501 276 2001 1559 5.7527606403274305 10.377046 1.3090858459472656 7309688.284373303 1270640 14.055032
    1990004501 302 2001 1559 5.469641916437395 10.377046 1.3090857881949458 7087651.027981914 1295816.3 14.074652
    1990004501 329 2001 1559 5.860018978756407 10.377046 1.3090858459472656 8113189.134433766 1384498.8 14.14085
    1990004501 305 2001 1559 5.469641916437395 10.377046 1.3090857881949458 7087651.027981914 1295816.3 14.074652
    1987003408 302 2001 2181 6.145504215642849 10.3646 1.2102010686355984 8319637.381975447 1353776.3 14.118408
    1990004501 166 2001 1559 5.388732750914947 10.377046 1.3090858459472656 7463122.963566745 1384949.5 14.141174
    1987003408 170 2001 2181 6.145504215642849 10.3646 1.0904509792301724 7601022.096657071 1236842.8 14.028072
    Now, my question is regarding a problem I have encountered while running a specific model. The issue is about missing p-values, confidence intervals, and t-values for some parameters of the regression results.

    The regression I am running is a translog revenue function, which assesses output-oriented technical efficiency by incorporating firm fixed effect parameters using firm dummies. Additionally, it includes two price distortion parameters to measure allocation biases. This modelling approach aligns is in line with Kumbhakar and Lovell (2003) and Asche and Roll (2018). I used the STATA nl command for non-linear models.

    To run the model, have to use initial values for the two price distortion parameters. I am sharing two of the results from several initial value trials, chosen randomly.


    The challenge I am facing is that in all my results, I observe missing p-values, confidence intervals, and t-values for two or three parameters. Furthermore, the parameter experiencing this issue changes when I alter the initial values.



    I am very much interested in your insights on how to address this problem of the absence of p-values, confidence intervals, and t-values in the parameters of the estimated results. Do you have any tips on why this might be happening? I have already checked the correlation between variables used in my regression model. None of them show a high correlation. The highest correlation I found is 0.6750, which is between capital and total revenue, representing the dependent variable and one of the independent variables. The lowest correlation is 0.0751, which exists between price 1 and price 3. Hence, I become less concerned that correlation is causing this.

    I presented to you below the screenshot of two of my results

    e.g 1) When I use initial values of (θBA 0.01 θCA 0.01) for both of the price bias parameters, the coefficient of firm 4, the coefficient of price_3 and the coefficient of capital get missing p-values, confidence intervals, and t-values.

    nl (ln_Totalrevenue_div_price_1 = {b1}*Firm1 + {b2}*Firm2 + {b3}*Firm3 + {b4}*Firm4 + {b5}*Firm5 + {b6}*Firm6 + {b7}*Firm7 + {b8}*Firm8 + {dB}*ln(Price_2/Price_1) + {dC}*ln(Price_3/Price_1) + 1/2*{dBB}*ln(Price_2/Price_1)*ln(Price_2/Price_1) + 1/2*{dCC}*ln(Price_3/Price_1) * ln(Price_3/Price_1) + {dBC}*ln(Price_2/Price_1)* ln(Price_3/Price_1) + {dK}*ln(Capital) + 1/2*{dKK}*ln(Capital)*ln(Capital) + {dBK}*ln(Price_2/Price_1)*ln(Capital) + {dCK}*ln(Price_3/Price_1)*ln(Capital) + {dY}*year + 1/2*{dYY}*year*year + ( {dB}*ln({θBA}) + {dBC}*ln({θCA})*ln(Price_2/Price_1) + {dBK}*ln(Capital)*ln({θBA}) + {dC}*ln({θCA}) + {dBC}*ln({θBA})*ln(Price_3/Price_1) + {dCK}*ln(Capital)*ln({θCA}) + (1/2)*(({dBC}*ln({θCA})*ln({θBA})) + ({dBC}*ln({θCA})*ln({θBA}))))) , noconstant initial (θBA 0.01 θCA 0.01)
    Click image for larger version

Name:	Initial value_0.01.JPG
Views:	1
Size:	81.9 KB
ID:	1740284




    e.g. 2) When I use initial values (θBA 0.01 θCA 1.01 ) for both of the price bias parameters, the price distortion parameters of the price of product 3 relative to the price of product 1 ( that is θCA ) gets missing p-values, confidence intervals, and t-values.

    nl (ln_Totalrevenue_div_price_1 = {b1}*Firm1 + {b2}*Firm2 + {b3}*Firm3 + {b4}*Firm4 + {b5}*Firm5 + {b6}*Firm6 + {b7}*Firm7 + {b8}*Firm8 + {dB}*ln(Price_2/Price_1) + {dC}*ln(Price_3/Price_1) + 1/2*{dBB}*ln(Price_2/Price_1)*ln(Price_2/Price_1) + 1/2*{dCC}*ln(Price_3/Price_1) * ln(Price_3/Price_1) + {dBC}*ln(Price_2/Price_1)* ln(Price_3/Price_1) + {dK}*ln(Capital) + 1/2*{dKK}*ln(Capital)*ln(Capital) + {dBK}*ln(Price_2/Price_1)*ln(Capital) + {dCK}*ln(Price_3/Price_1)*ln(Capital) + {dY}*year + 1/2*{dYY}*year*year + ( {dB}*ln({θBA}) + {dBC}*ln({θCA})*ln(Price_2/Price_1) + {dBK}*ln(Capital)*ln({θBA}) + {dC}*ln({θCA}) + {dBC}*ln({θBA})*ln(Price_3/Price_1) + {dCK}*ln(Capital)*ln({θCA}) + (1/2)*(({dBC}*ln({θCA})*ln({θBA})) + ({dBC}*ln({θCA})*ln({θBA}))))) , noconstant initial (θBA 0.01 θCA 1.01)

    Last edited by tig som; 18 Jan 2024, 11:08.
Working...
X