Dear forum members,
I am using individual data from one of the Indian large-scale household surveys with information on 9 digital skills of 877344 individuals aged 15 years and above. The question is asked in yes (1) no (0) form.
I intend to decompose inequality in digital skill by social group (caste in India [ST, SC, OBC, Other])
In the full sample, I have 70% zeros.
I have two questions related to methodology-
1. Shall I go with linear regression and decomposition by taking a total of all nine skills?
or
2. Create a binary dependent variable and apply non-linear decomposition
or
3. Is there any method(s) which can help considering the level of skill
I am using individual data from one of the Indian large-scale household surveys with information on 9 digital skills of 877344 individuals aged 15 years and above. The question is asked in yes (1) no (0) form.
I intend to decompose inequality in digital skill by social group (caste in India [ST, SC, OBC, Other])
In the full sample, I have 70% zeros.
I have two questions related to methodology-
1. Shall I go with linear regression and decomposition by taking a total of all nine skills?
Code:
egen digitalskill=rowtotal(b5q8 b5q9 b5q10 b5q11 b5q12 b5q13 b5q14 b5q15 b5q16) la var digitalskill "total scor of skills"
2. Create a binary dependent variable and apply non-linear decomposition
Code:
recode digitalskill (0=0 "no") (1/9=1 "yes"), gen(digtskill)
3. Is there any method(s) which can help considering the level of skill
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input byte(b5q8 b5q9 b5q10 b5q11 b5q12 b5q13 b5q14 b5q15 b5q16 ST SC OBC Others) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 end label values b5q8 b5q8 label def b5q8 0 "no", modify label def b5q8 1 "yes", modify label values b5q9 b5q9 label def b5q9 0 "no", modify label def b5q9 1 "yes", modify label values b5q10 b5q10 label def b5q10 0 "no", modify label def b5q10 1 "yes", modify label values b5q11 b5q11 label def b5q11 0 "no", modify label def b5q11 1 "yes", modify label values b5q12 b5q12 label def b5q12 0 "no", modify label def b5q12 1 "yes", modify label values b5q13 b5q13 label def b5q13 0 "no", modify label def b5q13 1 "yes", modify label values b5q14 b5q14 label def b5q14 0 "no", modify label def b5q14 1 "yes", modify label values b5q15 b5q15 label def b5q15 0 "no", modify label def b5q15 1 "yes", modify label values b5q16 b5q16 label def b5q16 0 "no", modify label def b5q16 1 "yes", modify
Comment