Dear Statalisters:
I am trying to correctly interpret the results of marginal effects that are produced with melogit with odds ratio option. Attached below are the commands and results. I tell Stata to calculate marginal effects with the command "margins, dydx(i.singlemom3) at(nordic=(0(1)1)) expression(exp(predict(xb)))". Both singlemom3 and nordic are dummy variables.
In this case, is it correct to interpret the marginal effect of singlemom3 with nordic==1 that when nordic==1, the odds ratio is .0073617, and it suggests that the odds of pov50 happening when nordic==1 are 99.3% lower? I'd like to make sure 2 things: that I'm calculating the odds ratio correctly and that I'm interpreting the meaning of .0073617 correctly.
Thank you for your help in advance!
Best,
Taka
I am trying to correctly interpret the results of marginal effects that are produced with melogit with odds ratio option. Attached below are the commands and results. I tell Stata to calculate marginal effects with the command "margins, dydx(i.singlemom3) at(nordic=(0(1)1)) expression(exp(predict(xb)))". Both singlemom3 and nordic are dummy variables.
In this case, is it correct to interpret the marginal effect of singlemom3 with nordic==1 that when nordic==1, the odds ratio is .0073617, and it suggests that the odds of pov50 happening when nordic==1 are 99.3% lower? I'd like to make sure 2 things: that I'm calculating the odds ratio correctly and that I'm interpreting the meaning of .0073617 correctly.
Thank you for your help in advance!
Best,
Taka
HTML Code:
. use pov50 age age2 educ nhhmem17 child5 nordic limatppp_L3 itotedupergdp_L3 lalmptotppp_L3 age singlemom3 cid emp_ilo using $mydata/tsakam/lis15pov2.dta
. melogit pov50 age age2 educ nhhmem17 child5 nordic##singlemom3 limatppp_L3 itotedupergdp_L3 lalmptotppp_L3 if age>24&age<55 & age~=.&emp_ilo==1 || cid: , or vce(cl cid)
Fitting fixed-effects model:
Iteration 0: log likelihood = -359581.21
Iteration 1: log likelihood = -298766.56
Iteration 2: log likelihood = -297421.02
Iteration 3: log likelihood = -297396.28
Iteration 4: log likelihood = -297396.27
Refining starting values:
Grid node 0: log likelihood = -296811.38
Fitting full model:
Iteration 0: log pseudolikelihood = -296811.38 (not concave)
Iteration 1: log pseudolikelihood = -296805.38 (not concave)
Iteration 2: log pseudolikelihood = -296799.35 (not concave)
Iteration 3: log pseudolikelihood = -296794.37 (not concave)
Iteration 4: log pseudolikelihood = -296790.26 (not concave)
Iteration 5: log pseudolikelihood = -296786.89 (not concave)
Iteration 6: log pseudolikelihood = -296781.2 (not concave)
Iteration 7: log pseudolikelihood = -296778.86 (not concave)
Iteration 8: log pseudolikelihood = -296776.93 (not concave)
Iteration 9: log pseudolikelihood = -296776.13
Iteration 10: log pseudolikelihood = -296735.71
Iteration 11: log pseudolikelihood = -296638.1
Iteration 12: log pseudolikelihood = -296603.27
Iteration 13: log pseudolikelihood = -296603.2
Iteration 14: log pseudolikelihood = -296603.2
Mixed-effects logistic regression Number of obs = 2017275
Group variable: cid Number of groups = 14
Obs per group:
min = 2,091
avg = 144,091.1
max = 748,229
Integration method: mvaghermite Integration pts. = 7
Wald chi2(11) = 987786.79
Log pseudolikelihood = -296603.2 Prob > chi2 = 0.0000
(Std. Err. adjusted for 14 clusters in cid)
-----------------------------------------------------------------------------------
| Robust
pov50 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
------------------+----------------------------------------------------------------
age | .8267114 .0442137 -3.56 0.000 .7444413 .9180733
age2 | 1.002135 .0005695 3.75 0.000 1.001019 1.003251
educ | .5662244 .0347937 -9.26 0.000 .5019766 .6386952
nhhmem17 | 1.159116 .0329424 5.20 0.000 1.096316 1.225514
child5 | 1.028166 .106204 0.27 0.788 .8397282 1.25889
1.nordic | .3562969 .0983028 -3.74 0.000 .2074743 .6118709
1.singlemom3 | 4.729612 .7387682 9.95 0.000 3.482309 6.423677
|
nordic#singlemom3 |
1 1 | .315331 .0472083 -7.71 0.000 .2351436 .4228635
|
limatppp_L3 | 1.065768 .0688701 0.99 0.324 .9389829 1.209671
itotedupergdp_L3 | 1.114404 .0699055 1.73 0.084 .98548 1.260195
lalmptotppp_L3 | 1.032103 .054843 0.59 0.552 .9300204 1.14539
_cons | 1.626621 1.818156 0.44 0.663 .1819097 14.54511
------------------+----------------------------------------------------------------
cid |
var(_cons)| .0814162 .0573185 .0204857 .3235727
-----------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
. margins, dydx(i.singlemom3) at(nordic=(0(1)1)) expression(exp(predict(xb)))
Average marginal effects Number of obs = 2,017,275
Model VCE : Robust
Expression : exp(predict(xb))
dy/dx w.r.t. : 1.singlemom3
1._at : nordic = 0
2._at : nordic = 1
-------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
0.singlemom3 | (base outcome)
--------------+----------------------------------------------------------------
1.singlemom3 |
_at |
1 | .1568204 .0401026 3.91 0.000 .0782208 .2354199
2 | .0073617 .001456 5.06 0.000 .004508 .0102154
-------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
.
end of do-file
Comment