I am running a multivariable logistic regression and transforming the output into adjusted odds ratios. Here is the output:
From this, I see that groups 2 and 3 have a P-Value >0.05.
However, I then run a margins, and see the following:
What does it mean, that my AOR has a non-significant P-value with the base group (group=0) as reference, yet when I look at the confidence intervals in the post-estimation margins, there is no overlap?
I am confused how to interpret this, and would appreciate any guidance. My sample is small in groups 1-4, could that skew the margins estimation? Thank you so much.
Code:
Survey: Logistic regression Number of strata = 440 Number of obs = 22,438 Number of PSUs = 5,411 Population size = 41,230.988 Design df = 4,971 F( 52, 4920) = 70.70 Prob > F = 0.0000 -------------------------------------------------------------------------------------------- | Linearized outcome_2 | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval] ---------------------------+---------------------------------------------------------------- group | 0 | 1 (base) 1 | 1.720191 .2458567 3.80 0.000 1.29984 2.276478 2 | 1.169191 .1951802 0.94 0.349 .8428587 1.621872 3 | 1.178626 .181563 1.07 0.286 .8714046 1.594162 4 | 1.433473 .2405618 2.15 0.032 1.031593 1.991915
However, I then run a margins, and see the following:
margins, by(i.group)
Predictive margins
Number of strata = 440 Number of obs = 22,438
Number of PSUs = 5,411 Population size = 41,230.988
Model VCE : Linearized Design df = 4,971
Expression : Pr(outcome_2), predict()
over : group
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
group|
0 | .4901843 .003289 149.04 0.000 .4837364 .4966322
1 | .6628769 .0241366 27.46 0.000 .6155586 .7101953
2 | .6034503 .0286592 21.06 0.000 .5472656 .659635
3 | .557703 .0278401 20.03 0.000 .5031241 .6122819
4 | .5940185 .0291992 20.34 0.000 .5367752 .6512619
------------------------------------------------------------------------------
Predictive margins
Number of strata = 440 Number of obs = 22,438
Number of PSUs = 5,411 Population size = 41,230.988
Model VCE : Linearized Design df = 4,971
Expression : Pr(outcome_2), predict()
over : group
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
group|
0 | .4901843 .003289 149.04 0.000 .4837364 .4966322
1 | .6628769 .0241366 27.46 0.000 .6155586 .7101953
2 | .6034503 .0286592 21.06 0.000 .5472656 .659635
3 | .557703 .0278401 20.03 0.000 .5031241 .6122819
4 | .5940185 .0291992 20.34 0.000 .5367752 .6512619
------------------------------------------------------------------------------
I am confused how to interpret this, and would appreciate any guidance. My sample is small in groups 1-4, could that skew the margins estimation? Thank you so much.
Comment