Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Wald test for testing the statistical significance of interactions

    Dear Statalist Users,

    I'm currently working on a interviewer fixed-effects regression analysis. Specifically, I am testing an interaction of German language skills (very good / not very good) and ethnicity (German, ethnic German immigrant, mixed, Turkish and other), separately for men and women. My dependent variable is physical attractiveness on a 7-point scale. I display the predictive margins and the corresponding plots. However now I'm not quite sure how to test the statistical significance of the interaction. I checked the confidence intervals and the Wald test - but the results partly contradict each other.

    I'm working with Stata 16 and this is my code:

    Code:
     reghdfe c.att i.b1.ethni##lang_w1_di c.age i.b1.parentisced_short i.b1.isced_short c.pers_se c.pers_con c.pers_ag c.pers_ea c.sah [pweight=cdweight] if sex ==0, absorb (intid cohort) cluster (intid cohort)
    (dropped 45 singleton observations)
    (MWFE estimator converged in 4 iterations)
    Warning: VCV matrix was non-positive semi-definite; adjustment from Cameron, Gelbach & Miller applied.
    warning: missing F statistic; dropped variables due to collinearity or too few clusters
    
    HDFE Linear regression                            Number of obs   =      3,568
    Absorbing 2 HDFE groups                           F(  22,      2) =          .
    Statistics robust to heteroskedasticity           Prob > F        =          .
                                                      R-squared       =     0.4246
                                                      Adj R-squared   =     0.3612
    Number of clusters (intid)   =        330         Within R-sq.    =     0.0569
    Number of clusters (cohort)  =          3         Root MSE        =     1.0793
    
                                                                                      (Std. Err. adjusted for 3 clusters in intid cohort)
    -------------------------------------------------------------------------------------------------------------------------------------
                                                                        |               Robust
                                                                    att |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    --------------------------------------------------------------------+----------------------------------------------------------------
                                                                  ethni |
                                                            Aussiedler  |      0.225      0.145    1.550   0.261       -0.400       0.849
                                     Gemischter ethnischer Hintergrund  |      0.120      0.084    1.428   0.290       -0.241       0.481
                                                         Türkeistämmig  |      0.570      0.232    2.454   0.134       -0.430       1.570
                                   Anderer nicht-deutscher Hintergrund  |      0.154      0.144    1.066   0.398       -0.466       0.773
                                                                        |
                                                             lang_w1_di |
                                                        Nicht sehr gut  |     -0.263      0.178   -1.477   0.278       -1.029       0.503
                                                                        |
                                                       ethni#lang_w1_di |
                                             Aussiedler#Nicht sehr gut  |     -0.371      0.225   -1.646   0.242       -1.340       0.599
                      Gemischter ethnischer Hintergrund#Nicht sehr gut  |      0.227      0.260    0.870   0.476       -0.894       1.347
                                          Türkeistämmig#Nicht sehr gut  |     -0.450      0.258   -1.742   0.224       -1.562       0.662
                    Anderer nicht-deutscher Hintergrund#Nicht sehr gut  |      0.153      0.215    0.710   0.551       -0.771       1.076
                                                                        |
                                                                    age |      0.038      0.019    1.963   0.189       -0.045       0.122
                                                                        |
                                                      parentisced_short |
                              Sekundarstufe 2, berufliche Bildung (3b)  |      0.081      0.102    0.793   0.511       -0.357       0.518
       Obere Sekundarstufe allgemein, post sek., nicht tertiär (3a,4a)  |      0.114      0.088    1.295   0.325       -0.264       0.491
                                                               Tertiär  |      0.118      0.097    1.211   0.349       -0.301       0.537
                                                                        |
                                                            isced_short |
                                              0. Derzeit in Ausbildung  |      0.409      0.104    3.932   0.059       -0.039       0.857
                           2. Sekundarstufe 2, berufliche Bildung (3b)  |      0.199      0.084    2.356   0.143       -0.164       0.562
    3. Obere Sekundarstufe allgemein, post sek., nicht tertiär (3a,4a)  |      0.455      0.074    6.132   0.026        0.136       0.774
                                                            4. Teriäre  |      0.491      0.067    7.320   0.018        0.202       0.780
                                                                        |
                                                                pers_se |     -0.088      0.038   -2.320   0.146       -0.252       0.076
                                                               pers_con |     -0.011      0.032   -0.348   0.761       -0.149       0.126
                                                                pers_ag |     -0.070      0.053   -1.324   0.317       -0.298       0.158
                                                                pers_ea |     -0.071      0.018   -3.992   0.057       -0.147       0.006
                                                                    sah |      0.098      0.012    7.930   0.016        0.045       0.152
                                                                  _cons |      3.438      0.549    6.262   0.025        1.076       5.800
    -------------------------------------------------------------------------------------------------------------------------------------
    
    Absorbed degrees of freedom:
    -----------------------------------------------------+
     Absorbed FE | Categories  - Redundant  = Num. Coefs |
    -------------+---------------------------------------|
           intid |       330         330           0    *|
          cohort |         3           3           0    *|
    -----------------------------------------------------+
    * = FE nested within cluster; treated as redundant for DoF computation
    
    . 
    . margins, at (ethni=(1(1)5) lang_w1_di=(0(1)1))
    
    Predictive margins                              Number of obs     =      3,568
    Model VCE    : Robust
    
    Expression   : Linear prediction, predict()
    
    1._at        : ethni           =           1
                   lang_w1_di      =           0
    
    2._at        : ethni           =           1
                   lang_w1_di      =           1
    
    3._at        : ethni           =           2
                   lang_w1_di      =           0
    
    4._at        : ethni           =           2
                   lang_w1_di      =           1
    
    5._at        : ethni           =           3
                   lang_w1_di      =           0
    
    6._at        : ethni           =           3
                   lang_w1_di      =           1
    
    7._at        : ethni           =           4
                   lang_w1_di      =           0
    
    8._at        : ethni           =           4
                   lang_w1_di      =           1
    
    9._at        : ethni           =           5
                   lang_w1_di      =           0
    
    10._at       : ethni           =           5
                   lang_w1_di      =           1
    
    ------------------------------------------------------------------------------
                 |            Delta-method
                 |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
             _at |
              1  |      5.240      0.010  543.499   0.000        5.222       5.259
              2  |      4.977      0.179   27.770   0.000        4.626       5.329
              3  |      5.465      0.152   35.872   0.000        5.167       5.764
              4  |      4.832      0.209   23.081   0.000        4.421       5.242
              5  |      5.360      0.081   66.006   0.000        5.201       5.519
              6  |      5.324      0.307   17.332   0.000        4.722       5.926
              7  |      5.811      0.231   25.144   0.000        5.358       6.263
              8  |      5.097      0.145   35.158   0.000        4.813       5.382
              9  |      5.394      0.138   39.023   0.000        5.123       5.665
             10  |      5.284      0.172   30.806   0.000        4.947       5.620
    ------------------------------------------------------------------------------
    
    . 
    . margins, at (ethni=(1(1)5) lang_w1_di=(0(1)1)) coeflegend post
    
    Predictive margins                              Number of obs     =      3,568
    Model VCE    : Robust
    
    Expression   : Linear prediction, predict()
    
    1._at        : ethni           =           1
                   lang_w1_di      =           0
    
    2._at        : ethni           =           1
                   lang_w1_di      =           1
    
    3._at        : ethni           =           2
                   lang_w1_di      =           0
    
    4._at        : ethni           =           2
                   lang_w1_di      =           1
    
    5._at        : ethni           =           3
                   lang_w1_di      =           0
    
    6._at        : ethni           =           3
                   lang_w1_di      =           1
    
    7._at        : ethni           =           4
                   lang_w1_di      =           0
    
    8._at        : ethni           =           4
                   lang_w1_di      =           1
    
    9._at        : ethni           =           5
                   lang_w1_di      =           0
    
    10._at       : ethni           =           5
                   lang_w1_di      =           1
    
    ------------------------------------------------------------------------------
                 |     Margin  Legend
    -------------+----------------------------------------------------------------
             _at |
              1  |      5.240  _b[1bn._at]
              2  |      4.977  _b[2._at]
              3  |      5.465  _b[3._at]
              4  |      4.832  _b[4._at]
              5  |      5.360  _b[5._at]
              6  |      5.324  _b[6._at]
              7  |      5.811  _b[7._at]
              8  |      5.097  _b[8._at]
              9  |      5.394  _b[9._at]
             10  |      5.284  _b[10._at]
    ------------------------------------------------------------------------------
    
    . 
    . test _b[1._at] = _b[2._at]
    
     ( 1)  1bn._at - 2._at = 0
    
               chi2(  1) =    2.18
             Prob > chi2 =    0.1396
    
    . 
    . test _b[3._at] = _b[4._at]
    
     ( 1)  3._at - 4._at = 0
    
               chi2(  1) =    8.61
             Prob > chi2 =    0.0033
    
    . 
    . test _b[5._at] = _b[6._at]
    
     ( 1)  5._at - 6._at = 0
    
               chi2(  1) =    0.01
             Prob > chi2 =    0.9050
    
    . 
    . test _b[7._at] = _b[8._at]
    
     ( 1)  7._at - 8._at = 0
    
               chi2(  1) =    7.68
             Prob > chi2 =    0.0056
    
    . 
    . test _b[9._at] = _b[10._at]
    
     ( 1)  9._at - 10._at = 0
    
               chi2(  1) =    0.97
             Prob > chi2 =    0.3240

    At first glance at the confidence intervals for ethnic Germans (margins at 3 and 4) and Turks (margins at 7 and 8), it looks as if the interaction between language skills and ethnicity is not statistically significant as the confidence intervals are overlapping. However the Wald test indicates that the effect is statistically significant at the 5% level for ethnic Germans (. test _b[3._at] = _b[4._at]) and Turks (. test _b[7._at] = _b[8._at]).

    Could someone give me a tip on which results I should rely on?
    ​​​​​
    Is it even possible to perform the Wald test with predictive margins or is it only possible with average marginal effects?

  • #2
    Yes, you can perform the Wald test with predictive margins. And you should believe the test, not the confidence intervals. Or, rather, you should bear in mind that the confidence intervals provide information about the uncertainty in a parameter, but the overlap of two confidence intervals is not a reliable way to assess the difference between the two parameters. It does work in the other direction: when the confidence intervals fail to overlap, the difference is statistically significant at the corresponding level. But when the confidence intervals overlap, the difference might or might not be statistically significant. To use confidence intervals to assess a difference you must calculate the confidence interval around the difference; you cannot rely on the separate confidence intervals for the things being compared.

    See myth #21 in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877414/. Actually, do read the whole article. If you are like most people, you will find things in there that you believe about statistics that are just dead wrong.

    Comment


    • #3
      Thank you - that helps me a lot!

      Comment

      Working...
      X