Originally posted by Erik Ruzek
View Post
I ran the model you presented, and I modified the second model code to exclude the random slopes and I removed the vce(robust) option as it prevented the lrtest from computing.
Code:
mixed ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG /// Inflation Political ln_Assets ln_GDP CharismaticControls || Countryid: crisis , cov(un) /// residuals(ar 1, t(year)) eststo ri mixed ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG /// Inflation Political ln_Assets ln_GDP CharismaticControls || Countryid: , /// residuals(ar 1, t(year)) eststo rc lrtest rc ri, stats
Code:
. do "C:\Users\jesse\AppData\Local\Temp\STD58c0_000000.tmp" . mixed ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG /// > Inflation Political ln_Assets ln_GDP CharismaticControls || Countryid: crisis , cov(un) /// > residuals(ar 1, t(year)) Obtaining starting values by EM ... Performing gradient-based optimization: Iteration 0: Log likelihood = 46.857674 Iteration 1: Log likelihood = 49.990457 Iteration 2: Log likelihood = 50.852714 Iteration 3: Log likelihood = 50.896779 Iteration 4: Log likelihood = 50.897016 Iteration 5: Log likelihood = 50.897016 Computing standard errors ... Mixed-effects ML regression Number of obs = 199 Group variable: Countryid Number of groups = 25 Obs per group: min = 7 avg = 8.0 max = 8 Wald chi2(10) = 1728.95 Log likelihood = 50.897016 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------------------------ ln_Revenue | Coefficient Std. err. z P>|z| [95% conf. interval] -------------------------------+---------------------------------------------------------------- CharismaticValuebased | 1.183889 .3365705 3.52 0.000 .5242225 1.843555 | crisis#c.CharismaticValuebased | 1 | .0066603 .1103049 0.06 0.952 -.2095334 .222854 | 1.crisis | -.4462518 .6383311 -0.70 0.484 -1.697358 .8048542 HHI | .0000466 .0000497 0.94 0.349 -.0000509 .000144 GDPG | .0114903 .002893 3.97 0.000 .0058202 .0171604 Inflation | .0398219 .0048346 8.24 0.000 .0303463 .0492974 Political | .0491699 .0750792 0.65 0.513 -.0979826 .1963224 ln_Assets | .7857556 .0258404 30.41 0.000 .7351093 .8364018 ln_GDP | .2019008 .0564514 3.58 0.000 .091258 .3125435 CharismaticControls | -.4559882 .1321677 -3.45 0.001 -.7150322 -.1969442 _cons | -9.99609 2.402726 -4.16 0.000 -14.70535 -5.286834 ------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects parameters | Estimate Std. err. [95% conf. interval] -----------------------------+------------------------------------------------ Countryid: Unstructured | var(crisis) | .0132031 .0094471 .0032481 .0536692 var(_cons) | .120477 .037722 .0652211 .2225461 cov(crisis,_cons) | .0103949 .0132997 -.015672 .0364617 -----------------------------+------------------------------------------------ Residual: AR(1) | rho | .4009766 .1355596 .1077968 .6299944 var(e) | .0263192 .0056278 .0173086 .0400205 ------------------------------------------------------------------------------ LR test vs. linear model: chi2(4) = 280.25 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference. . eststo ri . mixed ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG /// > Inflation Political ln_Assets ln_GDP CharismaticControls || Countryid: , /// > residuals(ar 1, t(year)) Obtaining starting values by EM ... Performing gradient-based optimization: Iteration 0: Log likelihood = 39.646494 Iteration 1: Log likelihood = 39.646494 (not concave) Iteration 2: Log likelihood = 47.679019 Iteration 3: Log likelihood = 48.591585 Iteration 4: Log likelihood = 48.619727 Iteration 5: Log likelihood = 48.61981 Iteration 6: Log likelihood = 48.61981 Computing standard errors ... Mixed-effects ML regression Number of obs = 199 Group variable: Countryid Number of groups = 25 Obs per group: min = 7 avg = 8.0 max = 8 Wald chi2(10) = 1743.46 Log likelihood = 48.61981 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------------------------ ln_Revenue | Coefficient Std. err. z P>|z| [95% conf. interval] -------------------------------+---------------------------------------------------------------- CharismaticValuebased | 1.26116 .3489299 3.61 0.000 .5772698 1.94505 | crisis#c.CharismaticValuebased | 1 | .0049884 .0912919 0.05 0.956 -.1739404 .1839172 | 1.crisis | -.4319053 .5281149 -0.82 0.413 -1.466991 .6031808 HHI | .000043 .0000515 0.84 0.403 -.0000578 .0001439 GDPG | .0120583 .0029826 4.04 0.000 .0062126 .0179041 Inflation | .039591 .0049799 7.95 0.000 .0298306 .0493515 Political | .0349166 .0781253 0.45 0.655 -.1182062 .1880393 ln_Assets | .7891284 .0261221 30.21 0.000 .73793 .8403267 ln_GDP | .202211 .0589909 3.43 0.001 .0865909 .3178311 CharismaticControls | -.4968404 .1365651 -3.64 0.000 -.7645031 -.2291778 _cons | -10.48755 2.491459 -4.21 0.000 -15.37072 -5.604378 ------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects parameters | Estimate Std. err. [95% conf. interval] -----------------------------+------------------------------------------------ Countryid: Identity | var(_cons) | .129686 .0401278 .070715 .2378343 -----------------------------+------------------------------------------------ Residual: AR(1) | rho | .4436219 .1062349 .2141314 .6267011 var(e) | .0305616 .0055765 .0213727 .0437013 ------------------------------------------------------------------------------ LR test vs. linear model: chi2(2) = 275.70 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference. . eststo rc . lrtest rc ri, stats Likelihood-ratio test Assumption: rc nested within ri LR chi2(2) = 4.55 Prob > chi2 = 0.1026 Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of the parameter space. If this is not true, then the reported test is conservative. Akaike's information criterion and Bayesian information criterion ----------------------------------------------------------------------------- Model | N ll(null) ll(model) df AIC BIC -------------+--------------------------------------------------------------- rc | 199 . 48.61981 14 -69.23962 -23.13335 ri | 199 . 50.89702 16 -69.79403 -17.10116 ----------------------------------------------------------------------------- Note: BIC uses N = number of observations. See [R] IC note. . end of do-file
Comment