but the feedback I received was quite adament that I was using the wrong model and insisted I used a mlm approach given the hierarchical nature of my data.
-
Login or Register
- Log in with
do "C:\Users\jesse\AppData\Local\Temp\STD2efc_000000.tmp" . //adjusted tolerance . mixed ln_Revenue c.CharismaticValuebased##i.crisis i.crisis HHI Political GDPG Inflation ln_GDP ln_Assets || Country:, iterate(10) tolerance(1e-5) Performing EM optimization ... Performing gradient-based optimization: Iteration 0: Log likelihood = -687343.55 Iteration 1: Log likelihood = -687343.55 (backed up) Iteration 2: Log likelihood = -687343.55 (backed up) Iteration 3: Log likelihood = -687343.55 (backed up) Iteration 4: Log likelihood = -687343.55 (backed up) Iteration 5: Log likelihood = -687343.55 (backed up) Iteration 6: Log likelihood = -687343.55 (backed up) Iteration 7: Log likelihood = -687343.55 (backed up) Iteration 8: Log likelihood = -687343.55 (backed up) Iteration 9: Log likelihood = -687343.55 (backed up) Iteration 10: Log likelihood = -687343.55 (backed up) convergence not achieved Computing standard errors ... Mixed-effects ML regression Number of obs = 354,283 Group variable: Country Number of groups = 25 Obs per group: min = 852 avg = 14,171.3 max = 65,676 Wald chi2(9) = 216935.24 Log likelihood = -687343.55 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------------------------ ln_Revenue | Coefficient Std. err. z P>|z| [95% conf. interval] -------------------------------+---------------------------------------------------------------- CharismaticValuebased | .64255 .3643443 1.76 0.078 -.0715518 1.356652 1.crisis | -.2174034 .1057229 -2.06 0.040 -.4246164 -.0101905 | crisis#c.CharismaticValuebased | 1 | -.03602 .0183068 -1.97 0.049 -.0719005 -.0001394 | HHI | .0001683 .0000567 2.97 0.003 .000057 .0002795 Political | -.1756487 .0253797 -6.92 0.000 -.2253919 -.1259055 GDPG | .0232012 .0007719 30.06 0.000 .0216882 .0247142 Inflation | .0279139 .0014549 19.19 0.000 .0250623 .0307654 ln_GDP | .4946042 .0404051 12.24 0.000 .4154117 .5737967 ln_Assets | .6557599 .0014367 456.43 0.000 .652944 .6585758 _cons | -13.07199 2.437147 -5.36 0.000 -17.84871 -8.295271 ------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects parameters | Estimate Std. err. [95% conf. interval] -----------------------------+------------------------------------------------ Country: Identity | var(_cons) | .355698 .1054047 .1989955 .6357988 -----------------------------+------------------------------------------------ var(Residual) | 2.834431 .0067348 2.821262 2.847662 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 12861.66 Prob >= chibar2 = 0.0000 Warning: Convergence not achieved. . mixed ln_Revenue c.CharismaticValuebased##i.crisis i.crisis HHI Political GDPG Inflation ln_GDP ln_Assets || Country:, iterate(10) tolerance(1e-6) Performing EM optimization ... Performing gradient-based optimization: Iteration 0: Log likelihood = -687343.55 Iteration 1: Log likelihood = -687343.55 (backed up) Iteration 2: Log likelihood = -687343.55 (backed up) Iteration 3: Log likelihood = -687343.55 (backed up) Iteration 4: Log likelihood = -687343.55 (backed up) Iteration 5: Log likelihood = -687343.55 (backed up) Iteration 6: Log likelihood = -687343.55 (backed up) Iteration 7: Log likelihood = -687343.55 (backed up) Iteration 8: Log likelihood = -687343.55 (backed up) Iteration 9: Log likelihood = -687343.55 (backed up) Iteration 10: Log likelihood = -687343.55 (backed up) convergence not achieved Computing standard errors ... Mixed-effects ML regression Number of obs = 354,283 Group variable: Country Number of groups = 25 Obs per group: min = 852 avg = 14,171.3 max = 65,676 Wald chi2(9) = 216935.24 Log likelihood = -687343.55 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------------------------ ln_Revenue | Coefficient Std. err. z P>|z| [95% conf. interval] -------------------------------+---------------------------------------------------------------- CharismaticValuebased | .64255 .3643443 1.76 0.078 -.0715518 1.356652 1.crisis | -.2174034 .1057229 -2.06 0.040 -.4246164 -.0101905 | crisis#c.CharismaticValuebased | 1 | -.03602 .0183068 -1.97 0.049 -.0719005 -.0001394 | HHI | .0001683 .0000567 2.97 0.003 .000057 .0002795 Political | -.1756487 .0253797 -6.92 0.000 -.2253919 -.1259055 GDPG | .0232012 .0007719 30.06 0.000 .0216882 .0247142 Inflation | .0279139 .0014549 19.19 0.000 .0250623 .0307654 ln_GDP | .4946042 .0404051 12.24 0.000 .4154117 .5737967 ln_Assets | .6557599 .0014367 456.43 0.000 .652944 .6585758 _cons | -13.07199 2.437147 -5.36 0.000 -17.84871 -8.295271 ------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects parameters | Estimate Std. err. [95% conf. interval] -----------------------------+------------------------------------------------ Country: Identity | var(_cons) | .355698 .1054047 .1989955 .6357988 -----------------------------+------------------------------------------------ var(Residual) | 2.834431 .0067348 2.821262 2.847662 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 12861.66 Prob >= chibar2 = 0.0000 Warning: Convergence not achieved. . mixed ln_Revenue c.CharismaticValuebased##i.crisis i.crisis HHI Political GDPG Inflation ln_GDP ln_Assets || Country:, iterate(10) tolerance(1e-7) Performing EM optimization ... Performing gradient-based optimization: Iteration 0: Log likelihood = -687343.55 Iteration 1: Log likelihood = -687343.55 (backed up) Iteration 2: Log likelihood = -687343.55 (backed up) Iteration 3: Log likelihood = -687343.55 (backed up) Iteration 4: Log likelihood = -687343.55 (backed up) Iteration 5: Log likelihood = -687343.55 (backed up) Iteration 6: Log likelihood = -687343.55 (backed up) Iteration 7: Log likelihood = -687343.55 (backed up) Iteration 8: Log likelihood = -687343.55 (backed up) Iteration 9: Log likelihood = -687343.55 (backed up) Iteration 10: Log likelihood = -687343.55 (backed up) convergence not achieved Computing standard errors ... Mixed-effects ML regression Number of obs = 354,283 Group variable: Country Number of groups = 25 Obs per group: min = 852 avg = 14,171.3 max = 65,676 Wald chi2(9) = 216935.24 Log likelihood = -687343.55 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------------------------ ln_Revenue | Coefficient Std. err. z P>|z| [95% conf. interval] -------------------------------+---------------------------------------------------------------- CharismaticValuebased | .64255 .3643443 1.76 0.078 -.0715518 1.356652 1.crisis | -.2174034 .1057229 -2.06 0.040 -.4246164 -.0101905 | crisis#c.CharismaticValuebased | 1 | -.03602 .0183068 -1.97 0.049 -.0719005 -.0001394 | HHI | .0001683 .0000567 2.97 0.003 .000057 .0002795 Political | -.1756487 .0253797 -6.92 0.000 -.2253919 -.1259055 GDPG | .0232012 .0007719 30.06 0.000 .0216882 .0247142 Inflation | .0279139 .0014549 19.19 0.000 .0250623 .0307654 ln_GDP | .4946042 .0404051 12.24 0.000 .4154117 .5737967 ln_Assets | .6557599 .0014367 456.43 0.000 .652944 .6585758 _cons | -13.07199 2.437147 -5.36 0.000 -17.84871 -8.295271 ------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects parameters | Estimate Std. err. [95% conf. interval] -----------------------------+------------------------------------------------ Country: Identity | var(_cons) | .355698 .1054047 .1989955 .6357988 -----------------------------+------------------------------------------------ var(Residual) | 2.834431 .0067348 2.821262 2.847662 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 12861.66 Prob >= chibar2 = 0.0000 Warning: Convergence not achieved. . mixed ln_Revenue c.CharismaticValuebased##i.crisis i.crisis HHI Political GDPG Inflation ln_GDP ln_Assets || Country:, iterate(10) tolerance(1e-8) Performing EM optimization ... Performing gradient-based optimization: Iteration 0: Log likelihood = -687343.55 Iteration 1: Log likelihood = -687343.55 (backed up) Iteration 2: Log likelihood = -687343.55 (backed up) Iteration 3: Log likelihood = -687343.55 (backed up) Iteration 4: Log likelihood = -687343.55 (backed up) Iteration 5: Log likelihood = -687343.55 (backed up) Iteration 6: Log likelihood = -687343.55 (backed up) Iteration 7: Log likelihood = -687343.55 (backed up) Iteration 8: Log likelihood = -687343.55 (backed up) Iteration 9: Log likelihood = -687343.55 (backed up) Iteration 10: Log likelihood = -687343.55 (backed up) convergence not achieved Computing standard errors ... Mixed-effects ML regression Number of obs = 354,283 Group variable: Country Number of groups = 25 Obs per group: min = 852 avg = 14,171.3 max = 65,676 Wald chi2(9) = 216935.24 Log likelihood = -687343.55 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------------------------ ln_Revenue | Coefficient Std. err. z P>|z| [95% conf. interval] -------------------------------+---------------------------------------------------------------- CharismaticValuebased | .64255 .3643443 1.76 0.078 -.0715518 1.356652 1.crisis | -.2174034 .1057229 -2.06 0.040 -.4246164 -.0101905 | crisis#c.CharismaticValuebased | 1 | -.03602 .0183068 -1.97 0.049 -.0719005 -.0001394 | HHI | .0001683 .0000567 2.97 0.003 .000057 .0002795 Political | -.1756487 .0253797 -6.92 0.000 -.2253919 -.1259055 GDPG | .0232012 .0007719 30.06 0.000 .0216882 .0247142 Inflation | .0279139 .0014549 19.19 0.000 .0250623 .0307654 ln_GDP | .4946042 .0404051 12.24 0.000 .4154117 .5737967 ln_Assets | .6557599 .0014367 456.43 0.000 .652944 .6585758 _cons | -13.07199 2.437147 -5.36 0.000 -17.84871 -8.295271 ------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects parameters | Estimate Std. err. [95% conf. interval] -----------------------------+------------------------------------------------ Country: Identity | var(_cons) | .355698 .1054047 .1989955 .6357988 -----------------------------+------------------------------------------------ var(Residual) | 2.834431 .0067348 2.821262 2.847662 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 12861.66 Prob >= chibar2 = 0.0000 Warning: Convergence not achieved. . end of do-file
//setting panel data egen panel_id = group(Company Country) xtset panel_id year
egen panel_id = group(Country) xtset panel_id year
. //setting panel data . egen panel_id = group(Country) . xtset panel_id year repeated time values within panel r(451); end of do-file r(451); . duplicates report Duplicates in terms of all variables -------------------------------------- Copies | Observations Surplus ----------+--------------------------- 1 | 433931 0 --------------------------------------
. do "C:\Users\jesse\AppData\Local\Temp\STD4d48_000000.tmp" . xtreg ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG Inflation Political ln_Assets ln_GDP Charismatic > Controls, re Random-effects GLS regression Number of obs = 199 Group variable: Countryid Number of groups = 25 R-squared: Obs per group: Within = 0.9149 min = 7 Between = 0.9189 avg = 8.0 Overall = 0.9174 max = 8 Wald chi2(10) = 2032.94 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------------------------ ln_Revenue | Coefficient Std. err. z P>|z| [95% conf. interval] -------------------------------+---------------------------------------------------------------- CharismaticValuebased | 1.339 .3757337 3.56 0.000 .6025754 2.075424 | crisis#c.CharismaticValuebased | 1 | .0003871 .0757 0.01 0.996 -.1479821 .1487564 | 1.crisis | -.4071218 .4375816 -0.93 0.352 -1.264766 .4505223 HHI | 9.87e-06 .0000544 0.18 0.856 -.0000967 .0001165 GDPG | .0161741 .0035483 4.56 0.000 .0092195 .0231286 Inflation | .0364583 .005248 6.95 0.000 .0261724 .0467441 Political | -.0324715 .0790676 -0.41 0.681 -.187441 .1224981 ln_Assets | .7888723 .022642 34.84 0.000 .7444948 .8332498 ln_GDP | .1984057 .0619121 3.20 0.001 .0770602 .3197511 CharismaticControls | -.5356591 .1466865 -3.65 0.000 -.8231593 -.2481589 _cons | -10.79411 2.674701 -4.04 0.000 -16.03643 -5.55179 -------------------------------+---------------------------------------------------------------- sigma_u | .39528599 sigma_e | .15829904 rho | .86179118 (fraction of variance due to u_i) ------------------------------------------------------------------------------------------------ . est store random . xtreg ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG Inflation Political ln_Assets ln_GDP Charismatic > Controls, fe note: CharismaticValuebased omitted because of collinearity. note: CharismaticControls omitted because of collinearity. Fixed-effects (within) regression Number of obs = 199 Group variable: Countryid Number of groups = 25 R-squared: Obs per group: Within = 0.9155 min = 7 Between = 0.8417 avg = 8.0 Overall = 0.8482 max = 8 F(8, 166) = 224.82 corr(u_i, Xb) = -0.1485 Prob > F = 0.0000 ------------------------------------------------------------------------------------------------ ln_Revenue | Coefficient Std. err. t P>|t| [95% conf. interval] -------------------------------+---------------------------------------------------------------- CharismaticValuebased | 0 (omitted) | crisis#c.CharismaticValuebased | 1 | .0043297 .0752718 0.06 0.954 -.1442837 .1529431 | 1.crisis | -.4305708 .4357462 -0.99 0.325 -1.29089 .4297481 HHI | .0000112 .0000565 0.20 0.843 -.0001004 .0001227 GDPG | .0158474 .0035799 4.43 0.000 .0087794 .0229154 Inflation | .0341004 .0057555 5.92 0.000 .0227371 .0454638 Political | -.1346436 .1003644 -1.34 0.182 -.3327988 .0635116 ln_Assets | .7837399 .0240839 32.54 0.000 .7361897 .8312902 ln_GDP | .2894671 .1671845 1.73 0.085 -.0406149 .6195491 CharismaticControls | 0 (omitted) _cons | -5.500988 4.447973 -1.24 0.218 -14.28288 3.280902 -------------------------------+---------------------------------------------------------------- sigma_u | .55697641 sigma_e | .15829904 rho | .92526101 (fraction of variance due to u_i) ------------------------------------------------------------------------------------------------ F test that all u_i=0: F(24, 166) = 56.30 Prob > F = 0.0000 . est store fixed . hausman fixed random Note: the rank of the differenced variance matrix (7) does not equal the number of coefficients being tested (8); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale. ---- Coefficients ---- | (b) (B) (b-B) sqrt(diag(V_b-V_B)) | fixed random Difference Std. err. -------------+---------------------------------------------------------------- crisis#| c. | Charismati~d | 1 | .0043297 .0003871 .0039426 . 1.crisis | -.4305708 -.4071218 -.023449 . HHI | .0000112 9.87e-06 1.33e-06 .0000153 GDPG | .0158474 .0161741 -.0003266 .0004746 Inflation | .0341004 .0364583 -.0023578 .0023631 Political | -.1346436 -.0324715 -.1021722 .0618169 ln_Assets | .7837399 .7888723 -.0051324 .0082082 ln_GDP | .2894671 .1984057 .0910615 .1552982 ------------------------------------------------------------------------------ b = Consistent under H0 and Ha; obtained from xtreg. B = Inconsistent under Ha, efficient under H0; obtained from xtreg. Test of H0: Difference in coefficients not systematic chi2(7) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 4.11 Prob > chi2 = 0.7670 (V_b-V_B is not positive definite) . end of do-file
. xtreg ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG Inflation Political ln_Assets ln_GDP Charismatic > Controls, re vce(robust) Random-effects GLS regression Number of obs = 199 Group variable: Countryid Number of groups = 25 R-squared: Obs per group: Within = 0.9149 min = 7 Between = 0.9189 avg = 8.0 Overall = 0.9174 max = 8 Wald chi2(10) = 4687.18 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. err. adjusted for 25 clusters in Countryid) ------------------------------------------------------------------------------------------------ | Robust ln_Revenue | Coefficient std. err. z P>|z| [95% conf. interval] -------------------------------+---------------------------------------------------------------- CharismaticValuebased | 1.339 .4171228 3.21 0.001 .5214543 2.156545 | crisis#c.CharismaticValuebased | 1 | .0003871 .1211898 0.00 0.997 -.2371405 .2379148 | 1.crisis | -.4071218 .6953072 -0.59 0.558 -1.769899 .9556554 HHI | 9.87e-06 .0000285 0.35 0.730 -.0000461 .0000658 GDPG | .0161741 .0049739 3.25 0.001 .0064254 .0259227 Inflation | .0364583 .0083884 4.35 0.000 .0200173 .0528992 Political | -.0324715 .0696303 -0.47 0.641 -.1689443 .1040013 ln_Assets | .7888723 .0234967 33.57 0.000 .7428196 .8349249 ln_GDP | .1984057 .0604838 3.28 0.001 .0798596 .3169517 CharismaticControls | -.5356591 .156792 -3.42 0.001 -.8429658 -.2283524 _cons | -10.79411 2.719071 -3.97 0.000 -16.12339 -5.464827 -------------------------------+---------------------------------------------------------------- sigma_u | .39528599 sigma_e | .15829904 rho | .86179118 (fraction of variance due to u_i) ------------------------------------------------------------------------------------------------
. xtregar ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG Inflation Political ln_Assets ln_GDP Charismat > icControls, re RE GLS regression with AR(1) disturbances Number of obs = 199 Group variable: Countryid Number of groups = 25 R-squared: Obs per group: Within = 0.9130 min = 7 Between = 0.9236 avg = 8.0 Overall = 0.9214 max = 8 Wald chi2(11) = 1792.89 corr(u_i, Xb) = 0 (assumed) Prob > chi2 = 0.0000 ------------------- theta -------------------- min 5% median 95% max 0.7430 0.7571 0.7571 0.7571 0.7571 ------------------------------------------------------------------------------------------------ ln_Revenue | Coefficient Std. err. z P>|z| [95% conf. interval] -------------------------------+---------------------------------------------------------------- CharismaticValuebased | 1.263651 .3043116 4.15 0.000 .6672115 1.860091 | crisis#c.CharismaticValuebased | 1 | .001307 .0899475 0.01 0.988 -.1749867 .1776008 | 1.crisis | -.4140793 .5201949 -0.80 0.426 -1.433643 .6054839 HHI | .0000399 .0000539 0.74 0.458 -.0000656 .0001455 GDPG | .0129674 .0032996 3.93 0.000 .0065003 .0194346 Inflation | .0392117 .0052563 7.46 0.000 .0289096 .0495138 Political | .0389566 .075225 0.52 0.605 -.1084817 .1863948 ln_Assets | .7867611 .0254949 30.86 0.000 .7367921 .8367302 ln_GDP | .201084 .052698 3.82 0.000 .0977979 .3043702 CharismaticControls | -.4985161 .1195439 -4.17 0.000 -.7328179 -.2642143 _cons | -10.43879 2.176443 -4.80 0.000 -14.70454 -6.173043 -------------------------------+---------------------------------------------------------------- rho_ar | .29331591 (estimated autocorrelation coefficient) sigma_u | .32852848 sigma_e | .17272958 rho_fov | .78343419 (fraction of variance due to u_i) ------------------------------------------------------------------------------------------------ . end of do-file
. xtreg ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG Inflation Political ln_Assets ln_GDP Charismatic > Controls, fe vce(robust) note: CharismaticValuebased omitted because of collinearity. note: CharismaticControls omitted because of collinearity. Fixed-effects (within) regression Number of obs = 199 Group variable: Countryid Number of groups = 25 R-squared: Obs per group: Within = 0.9155 min = 7 Between = 0.8417 avg = 8.0 Overall = 0.8482 max = 8 F(8, 24) = 380.51 corr(u_i, Xb) = -0.1485 Prob > F = 0.0000 (Std. err. adjusted for 25 clusters in Countryid) ------------------------------------------------------------------------------------------------ | Robust ln_Revenue | Coefficient std. err. t P>|t| [95% conf. interval] -------------------------------+---------------------------------------------------------------- CharismaticValuebased | 0 (omitted) | crisis#c.CharismaticValuebased | 1 | .0043297 .1211158 0.04 0.972 -.2456411 .2543005 | 1.crisis | -.4305708 .6968927 -0.62 0.542 -1.868887 1.007745 HHI | .0000112 .0000314 0.36 0.725 -.0000537 .0000761 GDPG | .0158474 .0049517 3.20 0.004 .0056276 .0260673 Inflation | .0341004 .0099366 3.43 0.002 .0135924 .0546085 Political | -.1346436 .0950652 -1.42 0.170 -.3308486 .0615614 ln_Assets | .7837399 .0209232 37.46 0.000 .7405565 .8269233 ln_GDP | .2894671 .2180609 1.33 0.197 -.1605885 .7395227 CharismaticControls | 0 (omitted) _cons | -5.500988 5.835328 -0.94 0.355 -17.54451 6.542538 -------------------------------+---------------------------------------------------------------- sigma_u | .55697641 sigma_e | .15829904 rho | .92526101 (fraction of variance due to u_i) ------------------------------------------------------------------------------------------------
mixed ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG /// Inflation Political ln_Assets ln_GDP Charismat icControls || Countryid: , /// residuals(ar 1, t(time_variable)) vce(robust)
mixed ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG /// Inflation Political ln_Assets ln_GDP Charismat icControls || Countryid: , /// residuals(ar 1, t(time_variable)) vce(robust)
. mixed ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG /// > Inflation Political ln_Assets ln_GDP CharismaticControls || Countryid: , /// > residuals(ar 1, t(year)) vce(robust) Obtaining starting values by EM ... Performing gradient-based optimization: Iteration 0: Log pseudolikelihood = 39.646494 Iteration 1: Log pseudolikelihood = 39.646494 (not concave) Iteration 2: Log pseudolikelihood = 47.679019 Iteration 3: Log pseudolikelihood = 48.591585 Iteration 4: Log pseudolikelihood = 48.619727 Iteration 5: Log pseudolikelihood = 48.61981 Iteration 6: Log pseudolikelihood = 48.61981 Computing standard errors ... Mixed-effects regression Number of obs = 199 Group variable: Countryid Number of groups = 25 Obs per group: min = 7 avg = 8.0 max = 8 Wald chi2(10) = 5440.32 Log pseudolikelihood = 48.61981 Prob > chi2 = 0.0000 (Std. err. adjusted for 25 clusters in Countryid) ------------------------------------------------------------------------------------------------ | Robust ln_Revenue | Coefficient std. err. z P>|z| [95% conf. interval] -------------------------------+---------------------------------------------------------------- CharismaticValuebased | 1.26116 .3860361 3.27 0.001 .504543 2.017777 | crisis#c.CharismaticValuebased | 1 | .0049884 .129382 0.04 0.969 -.2485956 .2585724 | 1.crisis | -.4319053 .7433895 -0.58 0.561 -1.888922 1.025111 HHI | .000043 .0000272 1.58 0.114 -.0000103 .0000964 GDPG | .0120583 .004544 2.65 0.008 .0031523 .0209643 Inflation | .039591 .0071666 5.52 0.000 .0255447 .0536374 Political | .0349166 .0625835 0.56 0.577 -.0877448 .1575779 ln_Assets | .7891284 .0209617 37.65 0.000 .7480443 .8302124 ln_GDP | .202211 .0543793 3.72 0.000 .0956295 .3087925 CharismaticControls | -.4968404 .1406497 -3.53 0.000 -.7725088 -.221172 _cons | -10.48755 2.565812 -4.09 0.000 -15.51645 -5.458649 ------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------ | Robust Random-effects parameters | Estimate std. err. [95% conf. interval] -----------------------------+------------------------------------------------ Countryid: Identity | var(_cons) | .129686 .03628 .0749492 .224398 -----------------------------+------------------------------------------------ Residual: AR(1) | rho | .4436219 .1180501 .1864588 .6438935 var(e) | .0305616 .0070029 .0195043 .0478875 ------------------------------------------------------------------------------ .
mixed ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG /// Inflation Political ln_Assets ln_GDP Charismat icControls || Countryid: crisis , cov(un) /// residuals(ar 1, t(time_variable)) vce(robust)
mixed ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG /// Inflation Political ln_Assets ln_GDP Charismat icControls || Countryid: crisis , cov(un) /// residuals(ar 1, t(time_variable)) vce(robust)
gen crisis = year >= 2020
. mixed ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG /// > Inflation Political ln_Assets ln_GDP CharismaticControls || Countryid: crisis , cov(un) /// > residuals(ar 1, t(year)) vce(robust) Obtaining starting values by EM ... Performing gradient-based optimization: Iteration 0: Log pseudolikelihood = 46.857674 Iteration 1: Log pseudolikelihood = 49.990457 Iteration 2: Log pseudolikelihood = 50.852714 Iteration 3: Log pseudolikelihood = 50.896779 Iteration 4: Log pseudolikelihood = 50.897016 Iteration 5: Log pseudolikelihood = 50.897016 Computing standard errors ... Mixed-effects regression Number of obs = 199 Group variable: Countryid Number of groups = 25 Obs per group: min = 7 avg = 8.0 max = 8 Wald chi2(10) = 4662.01 Log pseudolikelihood = 50.897016 Prob > chi2 = 0.0000 (Std. err. adjusted for 25 clusters in Countryid) ------------------------------------------------------------------------------------------------ | Robust ln_Revenue | Coefficient std. err. z P>|z| [95% conf. interval] -------------------------------+---------------------------------------------------------------- CharismaticValuebased | 1.183889 .3800979 3.11 0.002 .4389104 1.928867 | crisis#c.CharismaticValuebased | 1 | .0066603 .1294148 0.05 0.959 -.246988 .2603086 | 1.crisis | -.4462518 .7429435 -0.60 0.548 -1.902394 1.009891 HHI | .0000466 .0000266 1.75 0.080 -5.60e-06 .0000987 GDPG | .0114903 .0046471 2.47 0.013 .0023821 .0205985 Inflation | .0398219 .0073862 5.39 0.000 .0253452 .0542985 Political | .0491699 .0664332 0.74 0.459 -.0810368 .1793766 ln_Assets | .7857556 .0175209 44.85 0.000 .7514152 .8200959 ln_GDP | .2019008 .0527926 3.82 0.000 .0984292 .3053723 CharismaticControls | -.4559882 .1360658 -3.35 0.001 -.7226722 -.1893042 _cons | -9.99609 2.561318 -3.90 0.000 -15.01618 -4.976 ------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------ | Robust Random-effects parameters | Estimate std. err. [95% conf. interval] -----------------------------+------------------------------------------------ Countryid: Unstructured | var(crisis) | .0132031 .0099943 .0029947 .0582109 var(_cons) | .120477 .0357572 .0673395 .2155452 cov(crisis,_cons) | .0103949 .0105639 -.0103099 .0310996 -----------------------------+------------------------------------------------ Residual: AR(1) | rho | .4009766 .1534143 .0664203 .6544858 var(e) | .0263192 .0078923 .0146226 .0473721 ------------------------------------------------------------------------------ . est store CharRev . estat ic Akaike's information criterion and Bayesian information criterion ----------------------------------------------------------------------------- Model | N ll(null) ll(model) df AIC BIC -------------+--------------------------------------------------------------- CharRev | 199 . 50.89702 16 -69.79403 -17.10116 ----------------------------------------------------------------------------- Note: BIC uses N = number of observations. See [R] IC note. . //charismatic revenue . mixed ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG /// > Inflation Political ln_Assets ln_GDP CharismaticControls || Countryid: , /// > residuals(ar 1, t(year)) vce(robust) Obtaining starting values by EM ... Performing gradient-based optimization: Iteration 0: Log pseudolikelihood = 39.646494 Iteration 1: Log pseudolikelihood = 39.646494 (not concave) Iteration 2: Log pseudolikelihood = 47.679019 Iteration 3: Log pseudolikelihood = 48.591585 Iteration 4: Log pseudolikelihood = 48.619727 Iteration 5: Log pseudolikelihood = 48.61981 Iteration 6: Log pseudolikelihood = 48.61981 Computing standard errors ... Mixed-effects regression Number of obs = 199 Group variable: Countryid Number of groups = 25 Obs per group: min = 7 avg = 8.0 max = 8 Wald chi2(10) = 5440.32 Log pseudolikelihood = 48.61981 Prob > chi2 = 0.0000 (Std. err. adjusted for 25 clusters in Countryid) ------------------------------------------------------------------------------------------------ | Robust ln_Revenue | Coefficient std. err. z P>|z| [95% conf. interval] -------------------------------+---------------------------------------------------------------- CharismaticValuebased | 1.26116 .3860361 3.27 0.001 .504543 2.017777 | crisis#c.CharismaticValuebased | 1 | .0049884 .129382 0.04 0.969 -.2485956 .2585724 | 1.crisis | -.4319053 .7433895 -0.58 0.561 -1.888922 1.025111 HHI | .000043 .0000272 1.58 0.114 -.0000103 .0000964 GDPG | .0120583 .004544 2.65 0.008 .0031523 .0209643 Inflation | .039591 .0071666 5.52 0.000 .0255447 .0536374 Political | .0349166 .0625835 0.56 0.577 -.0877448 .1575779 ln_Assets | .7891284 .0209617 37.65 0.000 .7480443 .8302124 ln_GDP | .202211 .0543793 3.72 0.000 .0956295 .3087925 CharismaticControls | -.4968404 .1406497 -3.53 0.000 -.7725088 -.221172 _cons | -10.48755 2.565812 -4.09 0.000 -15.51645 -5.458649 ------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------ | Robust Random-effects parameters | Estimate std. err. [95% conf. interval] -----------------------------+------------------------------------------------ Countryid: Identity | var(_cons) | .129686 .03628 .0749492 .224398 -----------------------------+------------------------------------------------ Residual: AR(1) | rho | .4436219 .1180501 .1864588 .6438935 var(e) | .0305616 .0070029 .0195043 .0478875 ------------------------------------------------------------------------------ . est store CharRev . estat ic Akaike's information criterion and Bayesian information criterion ----------------------------------------------------------------------------- Model | N ll(null) ll(model) df AIC BIC -------------+--------------------------------------------------------------- CharRev | 199 . 48.61981 14 -69.23962 -23.13335 ----------------------------------------------------------------------------- Note: BIC uses N = number of observations. See [R] IC note.
mixed ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG /// Inflation Political ln_Assets ln_GDP Charismat icControls || Countryid: crisis , cov(un) /// residuals(ar 1, t(time_variable)) vce(robust) eststo ri mixed ln_Revenue CharismaticValuebased c.CharismaticValuebased#i.crisis i.crisis HHI GDPG /// Inflation Political ln_Assets ln_GDP Charismat icControls || Countryid: crisis , cov(un) /// residuals(ar 1, t(time_variable)) vce(robust) eststo rc lrtest rc ri, stats
Comment