Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Interpreting two-way fixed effects model

    Hello all,

    For my master's thesis, I am analyzing the effect of mitigation finance on emissions in developing countries. I have a mostly balanced panel with T=17 and N=127 (2149 observations in total). I regress CO2 emissions per capita on the lag of mitigation finance and various controls. I also use a shift-share type instrument to address potential endogeneity of mitigation finance.

    Running my regressions using different fixed effects specifications leads to confusing results that I am struggling to interpret. I ran the following three commands in Stata for a pooled OLS, country fixed effects, year fixed effects and both:

    Code:
    ivreg2 logCO2_perc (l4mitfin_perc = l4instrument) l4ODAexmitfin_perc urbanpop urbanpop2 industry trade oilprice FDInet im_* if exclude==0, cluster(country)
    ivreg2 logCO2_perc (l4mitfin_perc = l4instrument) l4ODAexmitfin_perc urbanpop urbanpop2 industry trade oilprice FDInet im_* i.country if exclude==0, cluster(country)
    ivreg2 logCO2_perc (l4mitfin_perc = l4instrument) l4ODAexmitfin_perc urbanpop urbanpop2 industry trade FDInet im_* i.Year if exclude==0, cluster(country)
    ivreg2 logCO2_perc (l4mitfin_perc = l4instrument) l4ODAexmitfin_perc urbanpop urbanpop2 industry trade FDInet im_* i.country i.Year if exclude==0, cluster(country)
    The results show a positive and significant effect in pooled OLS, country fixed effects and year-fixed effects models, but not in the two-way fixed effects model. In the two-way fixed effects model, the effect not only changes in significance but also in magnitude and direction. I am struggling to understand why all pooled OLS, country fixed effects and year-fixed effects are consistent, but the two-way model deviates. As I understand it, the two-way model should be a weighted average of country-fixed effect and year-fixed effects estimator (see Kropko J, Kubinec R (2020) Interpretation and identification of within-unit and cross-sectional variation in panel data models. PLoS ONE 15(4): e0231349. https://doi.org/10.1371/journal. pone.0231349). But in fact, the estimator from the two-way model lies outside of the two estimators from one-way models.

    Regression results:
    Code:
    CO2 per capita on mitigation finance and controls using POLS, country FE, year FE and two-way
    --------------------------------------------------------------
                    POLS    Country~E      Year FE    Two-way~E   
    --------------------------------------------------------------
    l4m~n_perc    0.0104***   0.00197***    0.0108*** -0.000232   
                  (3.80)       (2.81)       (3.22)      (-0.38)   
    
    l4ODAexm~c 0.00000759    0.0000281*   0.000000959    0.0000228   
                  (0.05)       (1.67)       (0.01)       (1.37)   
    
    urbanpop      0.0673***     0.138***    0.0673***     0.107***
                  (3.88)       (6.12)       (3.88)       (4.80)   
    
    urbanpop2  -0.000297*   -0.000971*** -0.000297*   -0.000890***
                 (-1.84)      (-5.35)      (-1.84)      (-4.98)   
    
    industry      0.0246***   0.00519**     0.0248***   0.00666***
                  (3.54)       (2.14)       (3.56)       (2.97)   
    
    trade        0.00861*** -0.0000413      0.00860***  0.000391   
                  (3.48)      (-0.06)       (3.45)       (0.58)   
    
    oilprice   -0.000729     0.000165                             
                 (-1.26)       (0.67)                             
    
    FDInet      -0.00264      0.00134***  -0.00260      0.00180***
                 (-1.11)       (4.25)      (-1.11)       (5.25)   
    
    _cons         -3.728***    -4.286***    -3.789***    -3.039***
                 (-8.95)      (-6.05)      (-9.10)      (-4.30)   
    --------------------------------------------------------------
    N               2149         2149         2149         2149   
    adj. R-sq      0.534        0.984        0.530        0.985   
    --------------------------------------------------------------
    t statistics in parentheses
    * p<0.10, ** p<0.05, *** p<0.01
    The phenomenon persists when using robust errors instead of cluster(country) and also if I regress without instrumentation. The same phenomenon also occurs when using a time-trend variable instead of time fixed effects.

    Are there any possible explanations for this phenomenon that I am overlooking? Could multicollinearity play a role (see VIF below)?
    Did I correctly specify these models in Stata or is there maybe a mistake that might cause the phenomenon?
    How worried should I be about the validity of my results?

    Code:
    vif, uncentered
    
        Variable |       VIF       1/VIF  
    -------------+----------------------
    l4mit~n_perc |      1.49    0.669579
    l4ODAexmit~c |      3.07    0.325313
        urbanpop |   1233.25    0.000811
       urbanpop2 |   1177.62    0.000849
        industry |     60.76    0.016458
           trade |     60.68    0.016479
          FDInet |      1.82    0.550937
            Year |
           2005  |      2.01    0.496449
           2006  |      2.04    0.489568
           2007  |      2.07    0.483273
           2008  |      2.10    0.475808
           2009  |      2.11    0.474606
           2010  |      2.13    0.468701
           2011  |      2.17    0.460143
           2012  |      2.21    0.452265
           2013  |      2.26    0.442214
           2014  |      2.33    0.429059
           2015  |      2.36    0.424420
           2016  |      2.43    0.411883
           2017  |      2.51    0.398927
           2018  |      2.55    0.391649
           2019  |      2.60    0.384961
           2020  |      2.70    0.370296
         country |
              3  |      3.15    0.317913
              4  |      2.65    0.377846
              5  |      2.28    0.439513
              6  |      8.94    0.111903
              7  |      2.51    0.398990
              8  |      2.47    0.405602
              9  |      9.01    0.110954
             10  |      1.88    0.532858
             11  |      1.92    0.519542
             12  |      4.12    0.242594
             13  |      1.99    0.503501
             14  |      1.94    0.514769
             15  |      2.04    0.489394
             16  |      2.60    0.385322
             17  |      1.92    0.521321
             18  |      2.50    0.400220
             19  |      6.23    0.160591
             20  |      1.75    0.571206
             21  |      1.36    0.736306
             22  |      2.29    0.437271
             23  |      1.99    0.502342
             24  |      1.99    0.501871
             25  |      2.02    0.494776
             26  |      1.86    0.538810
             27  |      7.31    0.136851
             28  |      2.19    0.457566
             29  |      4.53    0.220887
             30  |      1.87    0.535986
             31  |      1.98    0.504399
             32  |      3.02    0.331261
             33  |      3.36    0.297850
             34  |      1.94    0.514729
             35  |      2.00    0.500838
             37  |      3.68    0.271986
             38  |      2.78    0.359872
             39  |      3.77    0.264990
             40  |      2.38    0.420112
             41  |      2.01    0.498233
             42  |      2.59    0.386649
             43  |      3.86    0.259181
             45  |      1.93    0.518332
             46  |      1.65    0.605811
             47  |      2.07    0.483948
             48  |      7.87    0.127013
             49  |      2.09    0.479268
             50  |      2.03    0.493237
             51  |      1.93    0.517554
             53  |      1.93    0.517781
             54  |      1.90    0.526729
             55  |      1.97    0.506905
             56  |      3.23    0.309750
             57  |      1.97    0.507193
             58  |      2.03    0.492640
             59  |      1.87    0.533884
             60  |      2.17    0.460164
             61  |      3.46    0.288802
             62  |      3.57    0.280183
             63  |      1.98    0.504422
             64  |      7.22    0.138425
             65  |      2.10    0.476286
             66  |      1.71    0.583344
             67  |      2.10    0.476679
             70  |      2.02    0.496081
             71  |      1.90    0.527396
             72  |      7.18    0.139245
             73  |      2.22    0.449883
             75  |      5.56    0.179847
             76  |      1.89    0.528715
             78  |      3.79    0.263559
             79  |      2.54    0.393036
             80  |      1.88    0.532167
             81  |     14.57    0.068631
             82  |      4.47    0.223849
             83  |      1.94    0.516269
             84  |      2.00    0.500903
             85  |      4.47    0.223489
             86  |      3.03    0.330309
             87  |      1.98    0.505779
             88  |      2.70    0.370008
             89  |      2.42    0.413289
             90  |      2.09    0.479397
             91  |      1.90    0.525179
             92  |      1.93    0.519043
             93  |      1.91    0.523487
             95  |      1.54    0.650987
             96  |      2.05    0.488564
             97  |      1.52    0.658227
             98  |      1.97    0.506488
             99  |      2.10    0.475925
            100  |      5.50    0.181975
            101  |      1.95    0.513663
            103  |      2.66    0.376278
            104  |      2.47    0.405204
            105  |      2.20    0.454392
            106  |      4.14    0.241429
            107  |      1.93    0.517076
            108  |      1.52    0.656904
            109  |      1.69    0.592417
            111  |      6.50    0.153947
            112  |      1.91    0.523119
            113  |      2.05    0.487440
            114  |      2.84    0.352640
            115  |      2.02    0.496253
            116  |      2.17    0.459967
            117  |      1.75    0.572224
            119  |      2.31    0.433559
            121  |      1.71    0.583653
            125  |      1.94    0.516059
            126  |      2.88    0.346829
            128  |      1.82    0.549997
            129  |      1.82    0.549126
            130  |      2.10    0.476939
            131  |      1.94    0.516697
            132  |      1.89    0.528156
            133  |      1.81    0.553547
            135  |      2.62    0.381430
            136  |      3.17    0.315633
            137  |      2.30    0.434830
            140  |      1.65    0.606500
            141  |      2.77    0.361197
            142  |     10.78    0.092807
            143  |      1.94    0.515434
            144  |      1.98    0.505916
            146  |      2.22    0.450265
            149  |      1.92    0.520602
            150  |      1.86    0.538124
     im_industry |      1.43    0.700963
       im_FDInet |      1.94    0.516729
        im_trade |      2.46    0.405749
    -------------+----------------------
        Mean VIF |     19.35
    Any help or thoughts would be greatly appreciated!

  • #2
    Are you expecting the non FE results to be the same as the FE results? They will not be.

    Comment

    Working...
    X