Hello all,
For my master's thesis, I am analyzing the effect of mitigation finance on emissions in developing countries. I have a mostly balanced panel with T=17 and N=127 (2149 observations in total). I regress CO2 emissions per capita on the lag of mitigation finance and various controls. I also use a shift-share type instrument to address potential endogeneity of mitigation finance.
Running my regressions using different fixed effects specifications leads to confusing results that I am struggling to interpret. I ran the following three commands in Stata for a pooled OLS, country fixed effects, year fixed effects and both:
The results show a positive and significant effect in pooled OLS, country fixed effects and year-fixed effects models, but not in the two-way fixed effects model. In the two-way fixed effects model, the effect not only changes in significance but also in magnitude and direction. I am struggling to understand why all pooled OLS, country fixed effects and year-fixed effects are consistent, but the two-way model deviates. As I understand it, the two-way model should be a weighted average of country-fixed effect and year-fixed effects estimator (see Kropko J, Kubinec R (2020) Interpretation and identification of within-unit and cross-sectional variation in panel data models. PLoS ONE 15(4): e0231349. https://doi.org/10.1371/journal. pone.0231349). But in fact, the estimator from the two-way model lies outside of the two estimators from one-way models.
Regression results:
The phenomenon persists when using robust errors instead of cluster(country) and also if I regress without instrumentation. The same phenomenon also occurs when using a time-trend variable instead of time fixed effects.
Are there any possible explanations for this phenomenon that I am overlooking? Could multicollinearity play a role (see VIF below)?
Did I correctly specify these models in Stata or is there maybe a mistake that might cause the phenomenon?
How worried should I be about the validity of my results?
Any help or thoughts would be greatly appreciated!
For my master's thesis, I am analyzing the effect of mitigation finance on emissions in developing countries. I have a mostly balanced panel with T=17 and N=127 (2149 observations in total). I regress CO2 emissions per capita on the lag of mitigation finance and various controls. I also use a shift-share type instrument to address potential endogeneity of mitigation finance.
Running my regressions using different fixed effects specifications leads to confusing results that I am struggling to interpret. I ran the following three commands in Stata for a pooled OLS, country fixed effects, year fixed effects and both:
Code:
ivreg2 logCO2_perc (l4mitfin_perc = l4instrument) l4ODAexmitfin_perc urbanpop urbanpop2 industry trade oilprice FDInet im_* if exclude==0, cluster(country) ivreg2 logCO2_perc (l4mitfin_perc = l4instrument) l4ODAexmitfin_perc urbanpop urbanpop2 industry trade oilprice FDInet im_* i.country if exclude==0, cluster(country) ivreg2 logCO2_perc (l4mitfin_perc = l4instrument) l4ODAexmitfin_perc urbanpop urbanpop2 industry trade FDInet im_* i.Year if exclude==0, cluster(country) ivreg2 logCO2_perc (l4mitfin_perc = l4instrument) l4ODAexmitfin_perc urbanpop urbanpop2 industry trade FDInet im_* i.country i.Year if exclude==0, cluster(country)
Regression results:
Code:
CO2 per capita on mitigation finance and controls using POLS, country FE, year FE and two-way -------------------------------------------------------------- POLS Country~E Year FE Two-way~E -------------------------------------------------------------- l4m~n_perc 0.0104*** 0.00197*** 0.0108*** -0.000232 (3.80) (2.81) (3.22) (-0.38) l4ODAexm~c 0.00000759 0.0000281* 0.000000959 0.0000228 (0.05) (1.67) (0.01) (1.37) urbanpop 0.0673*** 0.138*** 0.0673*** 0.107*** (3.88) (6.12) (3.88) (4.80) urbanpop2 -0.000297* -0.000971*** -0.000297* -0.000890*** (-1.84) (-5.35) (-1.84) (-4.98) industry 0.0246*** 0.00519** 0.0248*** 0.00666*** (3.54) (2.14) (3.56) (2.97) trade 0.00861*** -0.0000413 0.00860*** 0.000391 (3.48) (-0.06) (3.45) (0.58) oilprice -0.000729 0.000165 (-1.26) (0.67) FDInet -0.00264 0.00134*** -0.00260 0.00180*** (-1.11) (4.25) (-1.11) (5.25) _cons -3.728*** -4.286*** -3.789*** -3.039*** (-8.95) (-6.05) (-9.10) (-4.30) -------------------------------------------------------------- N 2149 2149 2149 2149 adj. R-sq 0.534 0.984 0.530 0.985 -------------------------------------------------------------- t statistics in parentheses * p<0.10, ** p<0.05, *** p<0.01
Are there any possible explanations for this phenomenon that I am overlooking? Could multicollinearity play a role (see VIF below)?
Did I correctly specify these models in Stata or is there maybe a mistake that might cause the phenomenon?
How worried should I be about the validity of my results?
Code:
vif, uncentered Variable | VIF 1/VIF -------------+---------------------- l4mit~n_perc | 1.49 0.669579 l4ODAexmit~c | 3.07 0.325313 urbanpop | 1233.25 0.000811 urbanpop2 | 1177.62 0.000849 industry | 60.76 0.016458 trade | 60.68 0.016479 FDInet | 1.82 0.550937 Year | 2005 | 2.01 0.496449 2006 | 2.04 0.489568 2007 | 2.07 0.483273 2008 | 2.10 0.475808 2009 | 2.11 0.474606 2010 | 2.13 0.468701 2011 | 2.17 0.460143 2012 | 2.21 0.452265 2013 | 2.26 0.442214 2014 | 2.33 0.429059 2015 | 2.36 0.424420 2016 | 2.43 0.411883 2017 | 2.51 0.398927 2018 | 2.55 0.391649 2019 | 2.60 0.384961 2020 | 2.70 0.370296 country | 3 | 3.15 0.317913 4 | 2.65 0.377846 5 | 2.28 0.439513 6 | 8.94 0.111903 7 | 2.51 0.398990 8 | 2.47 0.405602 9 | 9.01 0.110954 10 | 1.88 0.532858 11 | 1.92 0.519542 12 | 4.12 0.242594 13 | 1.99 0.503501 14 | 1.94 0.514769 15 | 2.04 0.489394 16 | 2.60 0.385322 17 | 1.92 0.521321 18 | 2.50 0.400220 19 | 6.23 0.160591 20 | 1.75 0.571206 21 | 1.36 0.736306 22 | 2.29 0.437271 23 | 1.99 0.502342 24 | 1.99 0.501871 25 | 2.02 0.494776 26 | 1.86 0.538810 27 | 7.31 0.136851 28 | 2.19 0.457566 29 | 4.53 0.220887 30 | 1.87 0.535986 31 | 1.98 0.504399 32 | 3.02 0.331261 33 | 3.36 0.297850 34 | 1.94 0.514729 35 | 2.00 0.500838 37 | 3.68 0.271986 38 | 2.78 0.359872 39 | 3.77 0.264990 40 | 2.38 0.420112 41 | 2.01 0.498233 42 | 2.59 0.386649 43 | 3.86 0.259181 45 | 1.93 0.518332 46 | 1.65 0.605811 47 | 2.07 0.483948 48 | 7.87 0.127013 49 | 2.09 0.479268 50 | 2.03 0.493237 51 | 1.93 0.517554 53 | 1.93 0.517781 54 | 1.90 0.526729 55 | 1.97 0.506905 56 | 3.23 0.309750 57 | 1.97 0.507193 58 | 2.03 0.492640 59 | 1.87 0.533884 60 | 2.17 0.460164 61 | 3.46 0.288802 62 | 3.57 0.280183 63 | 1.98 0.504422 64 | 7.22 0.138425 65 | 2.10 0.476286 66 | 1.71 0.583344 67 | 2.10 0.476679 70 | 2.02 0.496081 71 | 1.90 0.527396 72 | 7.18 0.139245 73 | 2.22 0.449883 75 | 5.56 0.179847 76 | 1.89 0.528715 78 | 3.79 0.263559 79 | 2.54 0.393036 80 | 1.88 0.532167 81 | 14.57 0.068631 82 | 4.47 0.223849 83 | 1.94 0.516269 84 | 2.00 0.500903 85 | 4.47 0.223489 86 | 3.03 0.330309 87 | 1.98 0.505779 88 | 2.70 0.370008 89 | 2.42 0.413289 90 | 2.09 0.479397 91 | 1.90 0.525179 92 | 1.93 0.519043 93 | 1.91 0.523487 95 | 1.54 0.650987 96 | 2.05 0.488564 97 | 1.52 0.658227 98 | 1.97 0.506488 99 | 2.10 0.475925 100 | 5.50 0.181975 101 | 1.95 0.513663 103 | 2.66 0.376278 104 | 2.47 0.405204 105 | 2.20 0.454392 106 | 4.14 0.241429 107 | 1.93 0.517076 108 | 1.52 0.656904 109 | 1.69 0.592417 111 | 6.50 0.153947 112 | 1.91 0.523119 113 | 2.05 0.487440 114 | 2.84 0.352640 115 | 2.02 0.496253 116 | 2.17 0.459967 117 | 1.75 0.572224 119 | 2.31 0.433559 121 | 1.71 0.583653 125 | 1.94 0.516059 126 | 2.88 0.346829 128 | 1.82 0.549997 129 | 1.82 0.549126 130 | 2.10 0.476939 131 | 1.94 0.516697 132 | 1.89 0.528156 133 | 1.81 0.553547 135 | 2.62 0.381430 136 | 3.17 0.315633 137 | 2.30 0.434830 140 | 1.65 0.606500 141 | 2.77 0.361197 142 | 10.78 0.092807 143 | 1.94 0.515434 144 | 1.98 0.505916 146 | 2.22 0.450265 149 | 1.92 0.520602 150 | 1.86 0.538124 im_industry | 1.43 0.700963 im_FDInet | 1.94 0.516729 im_trade | 2.46 0.405749 -------------+---------------------- Mean VIF | 19.35
Comment