Hello everyone,
I have an unbalanced panel data of firms, from 1991 to 2021. Dependent variable is probability of default which is within [0,1] interval.
I begin by estimating Pooled OLS and Two fixed effect and then Pooled Fractional Probit, Correlated Random Effect probit (CRE), Unbalanced-Correlated random effect(CREU and CRUE1)
Standard errors are clustered at firm-industry-state level.
In CREU and CREU1 variable of interests is insignificant . How should I interpret this results.
My model is :
probability of default= a+ b * natural disaster frequency (dt_bil) + geographical dispersion (Concentration) +error
I followed :
Michael Bates & Jeffrey Wooldridge & Lelsie papke, 2022. "Nonlinear Correlated Random Effects Models with Endogeneity and Unbalanced Panels," Working Papers 202214, University of California at Riverside, Department of Economics.
[**
egen id=group(gvkey)
**
xtset id fyear
*** we are not interested in this model
qui : probit r7 dt_bil concentration
*** store which observations will be used in variable touse (read: to use)
gen touse = e(sample)
***
*** do the computations on only those observations that will be used in the model
egen bdt_bil = mean(dt_bil) if touse, by(id)
egen bcon = mean(concentration) if touse, by(id)
egen bn_ind = mean(n_ind) if touse, by(id)
* Year indicator, year dummay and year dummy bar
forv i = 1991(1)2021 {
gen y_`i' = (fyear==`i') if touse
bys id (fyear): egen yb_`i' = mean(y_`i') if touse
}
****CREU estimation includes indicators for each number of time-observations: Ti
bys id (fyear): gen Ti = _N
tab Ti if ~touse, gen(Ti_)
forv i = 1(1)31 {
bys id : egen o_`i' = total(Ti_`i' ) if touse| !missing(Ti_`i')
}
egen clusters=group(h_state id sic2)
****Linear OLS and Fixed effects
*POLS
reg r7 dt_bil concentration y_* ,vce(cluster clusters)
outreg2 using resultsl.doc, word replace ctitle(POLS)
*FE
reg r7 dt_bil concentration i.fyear i.id , vce(cluster clusters)
outreg2 using resultsl.doc, word append ctitle(FE)
************Non linear probit (CRE approach)
*Pooled Fractional Regression
fracreg probit r7 dt_bil concentration n_ind y_* yb_*, vce(cluster clusters)
outreg2 using resultsl.doc, word append ctitle(PFR)
*CRE
fracreg probit r7 dt_bil concentration n_ind bdt_bil bcon bn_ind y_* yb_* if Ti>1, vce(cluster clusters)
outreg2 using resultsl.doc, word append ctitle(CRE)
*CREU
fracreg probit r7 dt_bil concentration n_state bdt_bil bcon y_* yb_* ib(last).Ti if Ti>1, vce(cluster clusters) nolog
outreg2 using resultsl.doc, word append ctitle(CREU)
*CREU1
fracreg probit r7 dt_bil concentration n_state bdt_bil bcon y_* yb_* ib(last).Ti##c.bdt_bil ib(last).Ti##c.bcon if Ti>1, vce(cluster clusters) nolog
outreg2 using resultsl.doc, word append ctitle(CREU1)][/CODE]
I appreciate your comments and suggestions.
I have an unbalanced panel data of firms, from 1991 to 2021. Dependent variable is probability of default which is within [0,1] interval.
I begin by estimating Pooled OLS and Two fixed effect and then Pooled Fractional Probit, Correlated Random Effect probit (CRE), Unbalanced-Correlated random effect(CREU and CRUE1)
Standard errors are clustered at firm-industry-state level.
In CREU and CREU1 variable of interests is insignificant . How should I interpret this results.
My model is :
probability of default= a+ b * natural disaster frequency (dt_bil) + geographical dispersion (Concentration) +error
I followed :
Michael Bates & Jeffrey Wooldridge & Lelsie papke, 2022. "Nonlinear Correlated Random Effects Models with Endogeneity and Unbalanced Panels," Working Papers 202214, University of California at Riverside, Department of Economics.
[**
egen id=group(gvkey)
**
xtset id fyear
*** we are not interested in this model
qui : probit r7 dt_bil concentration
*** store which observations will be used in variable touse (read: to use)
gen touse = e(sample)
***
*** do the computations on only those observations that will be used in the model
egen bdt_bil = mean(dt_bil) if touse, by(id)
egen bcon = mean(concentration) if touse, by(id)
egen bn_ind = mean(n_ind) if touse, by(id)
* Year indicator, year dummay and year dummy bar
forv i = 1991(1)2021 {
gen y_`i' = (fyear==`i') if touse
bys id (fyear): egen yb_`i' = mean(y_`i') if touse
}
****CREU estimation includes indicators for each number of time-observations: Ti
bys id (fyear): gen Ti = _N
tab Ti if ~touse, gen(Ti_)
forv i = 1(1)31 {
bys id : egen o_`i' = total(Ti_`i' ) if touse| !missing(Ti_`i')
}
egen clusters=group(h_state id sic2)
****Linear OLS and Fixed effects
*POLS
reg r7 dt_bil concentration y_* ,vce(cluster clusters)
outreg2 using resultsl.doc, word replace ctitle(POLS)
*FE
reg r7 dt_bil concentration i.fyear i.id , vce(cluster clusters)
outreg2 using resultsl.doc, word append ctitle(FE)
************Non linear probit (CRE approach)
*Pooled Fractional Regression
fracreg probit r7 dt_bil concentration n_ind y_* yb_*, vce(cluster clusters)
outreg2 using resultsl.doc, word append ctitle(PFR)
*CRE
fracreg probit r7 dt_bil concentration n_ind bdt_bil bcon bn_ind y_* yb_* if Ti>1, vce(cluster clusters)
outreg2 using resultsl.doc, word append ctitle(CRE)
*CREU
fracreg probit r7 dt_bil concentration n_state bdt_bil bcon y_* yb_* ib(last).Ti if Ti>1, vce(cluster clusters) nolog
outreg2 using resultsl.doc, word append ctitle(CREU)
*CREU1
fracreg probit r7 dt_bil concentration n_state bdt_bil bcon y_* yb_* ib(last).Ti##c.bdt_bil ib(last).Ti##c.bcon if Ti>1, vce(cluster clusters) nolog
outreg2 using resultsl.doc, word append ctitle(CREU1)][/CODE]
(1) | (2) | (3) | (4) | (5) | (6) | |
VARIABLES | POLS | FE | PFR | CRE | CREU | CREU1 |
dt_bil | 0.000479*** | 3.53e-05*** | 0.000673*** | -0.000145 | -8.53e-05 | -0.000101 |
(4.45e-05) | (4.87e-06) | (7.83e-05) | (0.000101) | (6.77e-05) | (6.42e-05) | |
concentration | -0.0216*** | -0.00108 | -0.0658*** | -0.00865 | 0.000977 | 0.000760 |
(0.00261) | (0.00202) | (0.00800) | (0.0173) | (0.0103) | (0.00970) |
I appreciate your comments and suggestions.
Comment