I am attemtping to calculate cumulative incidence using the "ir" command and I would like to report the incidence of the exposed and unexposed together with confidence intervals but stata output provides only the estimate as illustrated below (the outputs in bold). How do I go about it? My data structure is also illustrated below.
treatment | ||||
Exposed Unexposed | Total | |||
depression | 120 164 | 284 | ||
timepoint | 21651 74922 | 96573 | ||
Incidence rate | .0055425 .0021889 | .0029408 | ||
Point estimate | [95% Conf. | Interval] | ||
Inc. rate diff. | .0033535 | .0023068 | .0044002 | |
Inc. rate ratio | 2.53203 | 1.983938 | 3.223855 | (exact) |
Attr. frac. ex. | .6050599 | .495952 | .6898123 | (exact) |
Attr. frac. pop | .2556591 | |||
(midp) Pr(k>=120) | = | 0.0000 | (exact) | |
(midp) 2*Pr(k>=120) | = | 0.0000 | (exact) |
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str8 id float(depression timepoint treatment) "C014F105" 0 38 0 "C010F077" 0 33 0 "C007F051" 0 40 1 "C006F045" 0 37 1 "C008F059" 0 36 0 "C007F052" 0 46 1 "C008F061" 0 38 0 "C006F046" 0 39 1 "C014F109" 0 41 0 "C014F112" 0 40 0 "C004F028" 0 35 1 "C013F101" 0 39 0 "C001F003" 0 38 1 "C014F105" 0 43 0 "C007F053" 0 39 1 "C010F074" 0 45 1 "C009F066" 0 40 1 "C001F005" 0 33 1 "C005F036" 0 35 0 "C016F123" 0 33 0 "C002F010" 0 34 1 "C001F007" 0 36 1 "C009F068" 0 44 1 "C003F018" 0 40 1 "C010F073" 1 43 1 "C010F075" 0 36 0 "C014F105" 0 42 0 "C006F047" 0 33 0 "C008F057" 0 36 0 "C008F063" 0 35 0 "C002F011" 0 42 1 "C006F043" 0 39 1 "C010F075" 0 43 1 "C004F027" 0 33 0 "C015F119" 0 40 0 "C011F081" 0 34 0 "C006F048" 0 39 1 "C002F015" 0 35 1 "C007F053" 0 41 1 "C008F063" 0 42 1 "C010F073" 0 41 1 "C007F049" 0 42 1 "C006F041" 0 33 0 "C009F065" 0 39 0 "C014F109" 0 43 0 "C015F116" 0 34 0 "C001F004" 2 38 1 "C008F061" 0 34 0 "C009F066" 0 45 1 "C015F115" 0 38 0 "C005F034" 0 33 0 "C002F011" 0 35 1 "C004F027" 0 40 1 "C010F077" 0 38 0 "C015F114" 0 35 0 "C014F111" 0 41 0 "C007F053" 0 37 0 "C007F049" 0 38 1 "C004F029" 0 37 1 "C003F020" 0 33 0 "C010F077" 0 33 0 "C003F022" 0 36 1 "C003F023" 0 36 1 "C006F042" 0 48 1 "C013F101" 0 37 0 "C002F016" 2 40 1 "C004F029" 1 35 1 "C007F056" 0 36 0 "C016F129" 0 40 0 "C010F077" 0 37 0 "C014F112" 0 38 0 "C001F005" 22 36 1 "C004F029" 0 38 1 "C009F068" 0 39 0 "C005F040" 1 38 1 "C016F122" 0 42 0 "C004F027" 0 39 1 "C015F119" 0 39 0 "C016F124" 0 36 0 "C010F074" 0 36 0 "C009F072" 0 40 1 "C007F053" 0 36 0 "C015F115" 0 42 0 "C012F094" 0 40 0 "C008F061" 1 44 1 "C004F027" 4 37 1 "C016F123" 0 42 0 "C010F075" 0 44 1 "C010F076" 0 41 1 "C005F036" 0 34 0 "C010F078" 0 44 1 "C013F104" 0 39 0 "C001F007" 0 38 1 "C007F054" 0 35 0 "C005F039" 0 38 1 "C002F009" 0 34 1 "C014F107" 0 34 0 "C013F099" 0 40 0 "C004F032" 0 40 1 "C010F078" 0 34 0 end
Comment