Dear Statalist Users,
I am trying to do a system GMM estimation for my master thesis where I am trying to calculate the effect of income inequality on growth (with other control variables too) in 36 rich countries between 1970 and 2022 - I would like to ask for some help regarding the xtabond2 syntax (I'm using sata 17).
So the dependent variable is a cumulative 5-year growth of the log of GDP per capita (created by substracting the 5-year lag). The right-hand side of the eq. includes the lagged depvar the gini (gini_disp), gov. expenditures (gov_exp), inflation, average year of schooling (AYoS_15), and trade openness (trade). My first question with this is that if I want to to measure how the variables at the beginning of the 5-year period affect the 5-year cumulative growth, should I create 5-year lags for the variable and do the regression with them? If not, here would be my syntax that I am very unsure of:
Here I added the lag(2 4) to avoid too many instruments, the orthogonal option is there because I have a lot of gaps in the data. Here I am not sure which of my variables are endogenous, predetermined and exogenous (expect that I know that the year and group dummies are exog. and the lagged depvar is endog.)
If I run this regression, most of my variables are insignificant (which can happen, but I'm more inclined to think that I am doing something wrong) and almost all of the years are ommitted due to collinearity (expect every 5-year like 1980, 1985, 1990, etc.) which is definitely seems wrong.
Here is the output:
So all in all, I have three main questions:
Thank you very much for your help in advance!
I am trying to do a system GMM estimation for my master thesis where I am trying to calculate the effect of income inequality on growth (with other control variables too) in 36 rich countries between 1970 and 2022 - I would like to ask for some help regarding the xtabond2 syntax (I'm using sata 17).
So the dependent variable is a cumulative 5-year growth of the log of GDP per capita (created by substracting the 5-year lag). The right-hand side of the eq. includes the lagged depvar the gini (gini_disp), gov. expenditures (gov_exp), inflation, average year of schooling (AYoS_15), and trade openness (trade). My first question with this is that if I want to to measure how the variables at the beginning of the 5-year period affect the 5-year cumulative growth, should I create 5-year lags for the variable and do the regression with them? If not, here would be my syntax that I am very unsure of:
Code:
xtabond2 lnGDPpc_gr5 L.lnGDPpc_gr5 gini_disp gov_exp gcf AYoS_15 infl trade i.year i.groups, iv(i.year i.groups) gmm(L.lnGDPpc_gr5 gini_disp gov_exp gcf AYoS_15 infl trade, lag(2 4) collapse) two robust orthogonal
If I run this regression, most of my variables are insignificant (which can happen, but I'm more inclined to think that I am doing something wrong) and almost all of the years are ommitted due to collinearity (expect every 5-year like 1980, 1985, 1990, etc.) which is definitely seems wrong.
Here is the output:
Code:
xtabond2 lnGDPpc_gr5 L.lnGDPpc_gr5 gini_disp gov_exp gcf AYoS_15 infl trade i.year i.groups, iv(i.year i.groups) gmm(L.lnGDP > pc_gr5 gini_disp gov_exp gcf AYoS_15 infl trade, lag(2 4) collapse) two robust orthogonal Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. 1970b.year dropped due to collinearity 1971.year dropped due to collinearity 1972.year dropped due to collinearity 1973.year dropped due to collinearity 1974.year dropped due to collinearity 1975.year dropped due to collinearity 1976.year dropped due to collinearity 1977.year dropped due to collinearity 1978.year dropped due to collinearity 1979.year dropped due to collinearity 1981.year dropped due to collinearity 1982.year dropped due to collinearity 1983.year dropped due to collinearity 1984.year dropped due to collinearity 1986.year dropped due to collinearity 1987.year dropped due to collinearity 1988.year dropped due to collinearity 1989.year dropped due to collinearity 1991.year dropped due to collinearity 1992.year dropped due to collinearity 1993.year dropped due to collinearity 1994.year dropped due to collinearity 1996.year dropped due to collinearity 1997.year dropped due to collinearity 1998.year dropped due to collinearity 1999.year dropped due to collinearity 2001.year dropped due to collinearity 2002.year dropped due to collinearity 2003.year dropped due to collinearity 2004.year dropped due to collinearity 2006.year dropped due to collinearity 2007.year dropped due to collinearity 2008.year dropped due to collinearity 2009.year dropped due to collinearity 2010.year dropped due to collinearity 2011.year dropped due to collinearity 2012.year dropped due to collinearity 2013.year dropped due to collinearity 2014.year dropped due to collinearity 2015.year dropped due to collinearity 2016.year dropped due to collinearity 2017.year dropped due to collinearity 2018.year dropped due to collinearity 2019.year dropped due to collinearity 2020.year dropped due to collinearity 2021.year dropped due to collinearity 2022.year dropped due to collinearity 1b.groups dropped due to collinearity Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step system GMM ------------------------------------------------------------------------------ Group variable: country_id Number of obs = 176 Time variable : year Number of groups = 34 Number of instruments = 36 Obs per group: min = 2 Wald chi2(18) = 3870.31 avg = 5.18 Prob > chi2 = 0.000 max = 7 ----------------------------------------------------------------------------------- | Corrected lnGDPpc_gr5 | Coefficient std. err. z P>|z| [95% conf. interval] ------------------+---------------------------------------------------------------- lnGDPpc_gr5 | L1. | 1.014607 .1403153 7.23 0.000 .7395938 1.28962 | gini_disp | .0055179 .0057715 0.96 0.339 -.005794 .0168299 gov_exp | .0107178 .0080529 1.33 0.183 -.0050656 .0265012 gcf | .0038121 .0024468 1.56 0.119 -.0009836 .0086078 AYoS_15 | .0386975 .0229345 1.69 0.092 -.0062533 .0836483 infl | -.0000766 .001517 -0.05 0.960 -.00305 .0028967 trade | -.000053 .0003429 -0.15 0.877 -.0007251 .000619 | year | 1980 | .1464282 .0715556 2.05 0.041 .0061818 .2866746 1985 | .1340342 .0634352 2.11 0.035 .0097034 .258365 1990 | .0899732 .0490963 1.83 0.067 -.0062537 .1862001 1995 | .0813435 .0458202 1.78 0.076 -.0084624 .1711495 2000 | .0766008 .0338248 2.26 0.024 .0103055 .1428961 2005 | .0248552 .0197054 1.26 0.207 -.0137668 .0634771 | groups | Mediterranean | .0823514 .0590913 1.39 0.163 -.0334655 .1981683 Nordic countries | .0153417 .0579169 0.26 0.791 -.0981733 .1288567 North America | -.0622995 .0500158 -1.25 0.213 -.1603286 .0357296 Post-Socialist | .0031748 .0511851 0.06 0.951 -.0971462 .1034959 Western Europe | .0502238 .052768 0.95 0.341 -.0531997 .1536472 | _cons | -.9419227 .4032259 -2.34 0.019 -1.732231 -.1516145 ----------------------------------------------------------------------------------- Instruments for orthogonal deviations equation Standard FOD.(1970b.year 1971.year 1972.year 1973.year 1974.year 1975.year 1976.year 1977.year 1978.year 1979.year 1980.year 1981.year 1982.year 1983.year 1984.year 1985.year 1986.year 1987.year 1988.year 1989.year 1990.year 1991.year 1992.year 1993.year 1994.year 1995.year 1996.year 1997.year 1998.year 1999.year 2000.year 2001.year 2002.year 2003.year 2004.year 2005.year 2006.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year 2013.year 2014.year 2015.year 2016.year 2017.year 2018.year 2019.year 2020.year 2021.year 2022.year 1b.groups 2.groups 3.groups 4.groups 5.groups 6.groups) GMM-type (missing=0, separate instruments for each period unless collapsed) L(2/4).(L.lnGDPpc_gr5 gini_disp gov_exp gcf AYoS_15 infl trade) collapsed Instruments for levels equation Standard 1970b.year 1971.year 1972.year 1973.year 1974.year 1975.year 1976.year 1977.year 1978.year 1979.year 1980.year 1981.year 1982.year 1983.year 1984.year 1985.year 1986.year 1987.year 1988.year 1989.year 1990.year 1991.year 1992.year 1993.year 1994.year 1995.year 1996.year 1997.year 1998.year 1999.year 2000.year 2001.year 2002.year 2003.year 2004.year 2005.year 2006.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year 2013.year 2014.year 2015.year 2016.year 2017.year 2018.year 2019.year 2020.year 2021.year 2022.year 1b.groups 2.groups 3.groups 4.groups 5.groups 6.groups _cons GMM-type (missing=0, separate instruments for each period unless collapsed) DL.(L.lnGDPpc_gr5 gini_disp gov_exp gcf AYoS_15 infl trade) collapsed ------------------------------------------------------------------------------ Arellano-Bond test for AR(1) in first differences: z = . Pr > z = . Arellano-Bond test for AR(2) in first differences: z = . Pr > z = . ------------------------------------------------------------------------------ Sargan test of overid. restrictions: chi2(17) = 54.55 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(17) = 23.50 Prob > chi2 = 0.134 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(11) = 18.20 Prob > chi2 = 0.077 Difference (null H = exogenous): chi2(6) = 5.29 Prob > chi2 = 0.507 iv(1970b.year 1971.year 1972.year 1973.year 1974.year 1975.year 1976.year 1977.year 1978.year 1979.year 1980.year 1981.year > 1982.year 1983.year 1984.year 1985.year 1986.year 1987.year 1988.year 1989.year 1990.year 1991.year 1992.year 1993.year 1994 > .year 1995.year 1996.year 1997.year 1998.year 1999.year 2000.year 2001.year 2002.year 2003.year 2004.year 2005.year 2006.yea > r 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year 2013.year 2014.year 2015.year 2016.year 2017.year 2018.year 20 > 19.year 2020.year 2021.year 2022.year 1b.groups 2.groups 3.groups 4.groups 5.groups 6.groups) Hansen test excluding group: chi2(6) = 10.21 Prob > chi2 = 0.116 Difference (null H = exogenous): chi2(11) = 13.29 Prob > chi2 = 0.275
- How do I correctly measure in stata the effect at the beginning of the period (ie. how gini in 1970 affects the cumulative growth of 1975)?
- Which variables should I put in iv() and gmm()?
- Why all those years are ommitted and what can I do against it?
Code:
* Example generated by -dataex-. For more info, type help dataex clear input str14 country long country_id int year double(gini_disp gov_exp gcf AYoS_15 infl trade) float lnGDPpc_gr5 "Australia" 1 1970 26.8 13.17 32.970001 9.7 3.4400001 26.15 . "Australia" 1 1971 26.5 13.9 32.099998 . 6.1399999 25.549999 . "Australia" 1 1972 26.2 14.41 30.43 . 6.02 24.76 . "Australia" 1 1973 25.9 14.61 28.389999 . 9.0900002 25.129999 . "Australia" 1 1974 25.6 14.45 30.57 . 15.42 26.32 . "Australia" 1 1975 24.3 16.790001 26.809999 10.52 15.16 28.969999 .05187 "Australia" 1 1976 24.9 17.879999 26.43 . 13.32 26.860001 .06198 "Australia" 1 1977 25.5 17.459999 26.959999 . 12.31 28.629999 .06605 "Australia" 1 1978 26.1 17.83 25.82 . 8 28.18 .05274 "Australia" 1 1979 26.7 17.360001 27.85 . 9.1199999 29.620001 .06671 "Australia" 1 1980 27.3 17.209999 27.09 11.2 10.14 32.299999 .08346 "Australia" 1 1981 27.9 17.809999 28.68 . 9.4899998 31.6 .08515 "Australia" 1 1982 27.4 17.74 29.83 . 11.35 30.33 .07647 "Australia" 1 1983 27.5 18.65 25.299999 . 10.04 29.18 .04303 "Australia" 1 1984 27.5 18.32 26.629999 . 3.96 28.540001 .04702 "Australia" 1 1985 28.5 19.25 28 11.2 6.73 32.490002 .06742 "Australia" 1 1986 28.5 19.43 28.48 . 9.0500002 33.009998 .07463 "Australia" 1 1987 28.9 19.370001 27.35 . 8.5299997 32.509998 .06932 "Australia" 1 1988 29.4 18.459999 27.969999 . 7.2199998 32.57 .14511 "Australia" 1 1989 29.8 17.780001 29.610001 . 7.5300002 32.07 .13332 "Australia" 1 1990 29.2 17.639999 28.940001 11.18 7.3299999 32.150002 .11554 "Australia" 1 1991 29.1 18.629999 24.219999 . 3.1800001 32.189999 .07452 "Australia" 1 1992 29.1 19.5 22.35 . 1.01 33.040001 .05754 "Australia" 1 1993 29 19.379999 23.6 . 1.75 35.400002 .04871 "Australia" 1 1994 28.9 18.809999 24.27 . 1.97 36.459999 .05702 "Australia" 1 1995 30.1 18.639999 26 11.2 4.6300001 37.709999 .06369 "Australia" 1 1996 30.4 18.58 24.790001 . 2.6199999 38.240002 .10597 "Australia" 1 1997 30.7 18.26 24.860001 . .22 37.98 .14045 "Australia" 1 1998 31 18.26 25.639999 . .86000001 39.990002 .14481 "Australia" 1 1999 31.3 18.67 26.16 . 1.48 39.060001 .15283 "Australia" 1 2000 31.6 18.469999 26.27 11.07 4.46 40.970001 .15266 "Australia" 1 2001 31.7 18.48 23.41 . 4.4099998 44.25 .13432 "Australia" 1 2002 31.7 18.290001 24.42 . 2.98 41.470001 .13455 "Australia" 1 2003 31.7 18.360001 25.950001 . 2.73 40.220001 .11855 "Australia" 1 2004 31.7 18.24 27.08 . 2.3399999 37.029999 .11173 "Australia" 1 2005 32.1 18.32 27.469999 11.38 2.6900001 39.18 .10377 "Australia" 1 2006 32.4 18.24 27.52 . 3.5599999 41.59 .10996 "Australia" 1 2007 32.7 18.110001 27.52 . 2.3299999 42.040001 .101 "Australia" 1 2008 33 18.02 28.610001 . 4.3499999 42.860001 .09688 "Australia" 1 2009 33 18.35 27.370001 . 1.77 45.75 .06419 "Australia" 1 2010 33 18.76 26.790001 11.54 2.9200001 40.52 .05159 "Australia" 1 2011 32.7 18.58 26.459999 . 3.3 41.84 .04778 "Australia" 1 2012 32.5 18.82 27.719999 . 1.76 43.169998 .04977 "Australia" 1 2013 32.6 18.77 27.879999 . 2.45 41.27 .043 "Australia" 1 2014 32.7 18.690001 26.73 . 2.49 42.470001 .05563 "Australia" 1 2015 32.7 19.1 26.280001 . 1.51 41.619999 .05626 "Australia" 1 2016 32.7 19.870001 25.42 . 1.28 40.82 .05784 "Australia" 1 2017 32.7 19.82 24.110001 . 1.95 41.950001 .04306 "Australia" 1 2018 32.7 19.9 24.559999 . 1.91 43.389999 .0482 "Australia" 1 2019 32.7 20.26 23.299999 . 1.61 45.830002 .04428 "Australia" 1 2020 32.6 21.74 22.25 . .85000002 44.23 .02451 "Australia" 1 2021 . 22.299999 22.76 . 2.8599999 39.869999 .03403 "Australia" 1 2022 . . . . 6.59 . . "Austria" 2 1970 . 14.32 31.040001 7.4 4.3699999 54.860001 . "Austria" 2 1971 . 14.39 31.030001 . 4.6999998 54.380001 . "Austria" 2 1972 . 14.24 32 . 6.3600001 54.299999 . "Austria" 2 1973 . 14.69 32.240002 . 7.5300002 54.459999 . "Austria" 2 1974 . 15.35 32.52 . 9.5200005 59.57 . "Austria" 2 1975 . 16.790001 27.16 7.7 8.4499998 56.599998 .178015 "Austria" 2 1976 . 17.18 28.51 . 7.3200002 59.919998 .179131 end label values country_id country_id2 label def country_id2 1 "AUS", modify label def country_id2 2 "AUT", modify
Comment