Hi. I am studying the effects of a telemedicine network on Covid outcomes per week in India. The network operated in 17 out of 36 Indian states. I am trying to create a matched control group before running a two-way fixed effects model.
My data is organized by states and the number of weeks of operation. The data comprises of a the outcome variable, con_avg7day, which varies by week number; a binary intervention variable (Telemed) which turns to 1 in the week the network started operations in a state; and, a set of other variables for matching (60 variables) which I hypothesize are related to the outcome and treatment variable, but are fixed (referred to as fixed variables below) - for eg, the population density per state in 2019, the poverty percentage as last available. A sample of the data is below.
I've run several models using different combinations of the fixed variables in the teffects command for the propensity score matching, but have failed to achieve convergence. On running the model below, I received the "treatment overlap assumption has been violated" message, deleted the overlap==1 observations, but still fail to achieve convergence.
I also ran a linear regressions followed by the vif command and check for variable correlation (shown below) to eliminate variables which are collinear in the models, but that hasn't helped either.
Any thoughts on what the problem may be here and how I can solve for it would be much appreciated.
My data is organized by states and the number of weeks of operation. The data comprises of a the outcome variable, con_avg7day, which varies by week number; a binary intervention variable (Telemed) which turns to 1 in the week the network started operations in a state; and, a set of other variables for matching (60 variables) which I hypothesize are related to the outcome and treatment variable, but are fixed (referred to as fixed variables below) - for eg, the population density per state in 2019, the poverty percentage as last available. A sample of the data is below.
Code:
input str50 state float(weeknum con_avg7day Telemed pop_perkm2_2019) int sexratio_2016 float(deathrate_2020 povertyperct per85_2011 rate_hostpital_public rate_hospital_private rate_hospital_beds_private rate_hospital_beds_total healthover_tot1516) "Andaman and Nicobar Islands" 3 1 0 48.12704 876 5.8 4.3 .2987537 .00007556675 .00001511335 .00055163726 .003259446 . "Andaman and Nicobar Islands" 4 9.714286 0 48.12704 876 5.8 4.3 .2987537 .00007556675 .00001511335 .00055163726 .003259446 . "Andaman and Nicobar Islands" 5 10.428572 0 48.12704 876 5.8 4.3 .2987537 .00007556675 .00001511335 .00055163726 .003259446 . "Andaman and Nicobar Islands" 6 11.142858 0 48.12704 876 5.8 4.3 .2987537 .00007556675 .00001511335 .00055163726 .003259446 . "Andaman and Nicobar Islands" 7 18.714285 0 48.12704 876 5.8 4.3 .2987537 .00007556675 .00001511335 .00055163726 .003259446 . "Andhra Pradesh" 25 372979 0 320.4234 998 6.3 12.31 .3636027 4.940541e-06 .000012830087 .0011507248 .0015938033 4.7 "Andhra Pradesh" 26 445229.7 0 320.4234 998 6.3 12.31 .3636027 4.940541e-06 .000012830087 .0011507248 .0015938033 4.7 "Andhra Pradesh" 27 517418.3 0 320.4234 998 6.3 12.31 .3636027 4.940541e-06 .000012830087 .0011507248 .0015938033 4.7 "Andhra Pradesh" 44 883609.4 0 320.4234 998 6.3 12.31 .3636027 4.940541e-06 .000012830087 .0011507248 .0015938033 4.7 "Andhra Pradesh" 45 885234.1 0 320.4234 998 6.3 12.31 .3636027 4.940541e-06 .000012830087 .0011507248 .0015938033 4.7 "Andhra Pradesh" 46 886255.6 0 320.4234 998 6.3 12.31 .3636027 4.940541e-06 .000012830087 .0011507248 .0015938033 4.7 "Andhra Pradesh" 47 887224.6 0 320.4234 998 6.3 12.31 .3636027 4.940541e-06 .000012830087 .0011507248 .0015938033 4.7 "Andhra Pradesh" 48 253650.86 0 320.4234 998 6.3 12.31 .3636027 4.940541e-06 .000012830087 .0011507248 .0015938033 4.7 "Arunachal Pradesh" 4 .2857143 1 17.95971 938 5.7 24.27 .2721635 .00014494681 .000013297872 .0001462766 .0017446808 5.73 "Arunachal Pradesh" 5 1 1 17.95971 938 5.7 24.27 .2721635 .00014494681 .000013297872 .0001462766 .0017446808 5.73
I've run several models using different combinations of the fixed variables in the teffects command for the propensity score matching, but have failed to achieve convergence. On running the model below, I received the "treatment overlap assumption has been violated" message, deleted the overlap==1 observations, but still fail to achieve convergence.
Code:
teffects ipwra (con_avg7day test_avg7day) (Telemed pop_perkm2_2019 sexratio_2016 projpercturb > an_2019 litrate_2011 birthrate_2020 deathrate_2020 naturalgrwthrate_2020 povertyperct lifeexp > ectancy_2019 per60_2011 per85_2011 rate_hospital_total rate_hospital_beds_total rate_icu_beds > _total rate_ventilators_total healthover_tot1516 exphealth_percap151, logit), iterate(100) os > ample(overlap) treatment 0 has 232 propensity scores less than 1.00e-05 treatment 1 has 40 propensity scores less than 1.00e-05 treatment overlap assumption has been violated by observations identified in variable osample(overlap) r(498); drop if overlap==1 (272 observations deleted) . teffects ipwra (con_avg7day test_avg7day) (Stepone pop_perkm2_2019 sexratio_2016 projpercturb > an_2019 litrate_2011 birthrate_2020 deathrate_2020 naturalgrwthrate_2020 povertyperct lifeexp > ectancy_2019 per60_2011 per85_2011 rate_hospital_total rate_hospital_beds_total rate_icu_beds > _total rate_ventilators_total healthover_tot1516 exphealth_percap151, logit), iterate(100) Iteration 0: EE criterion = 1.036e-16 (not concave) Iteration 1: EE criterion = 1.036e-16 (not concave) Iteration 2: EE criterion = 1.036e-16 (not concave) ..................................... Iteration 96: EE criterion = 1.036e-16 (not concave) Iteration 97: EE criterion = 1.036e-16 (not concave) Iteration 98: EE criterion = 1.036e-16 (not concave) Iteration 99: EE criterion = 1.036e-16 (not concave) Iteration 100: EE criterion = 1.036e-16 (not concave) convergence not achieved convergence not achieved The Gauss-Newton stopping criterion has been met but missing standard errors indicate some of the parameters are not identified. Treatment-effects estimation Number of obs = 1,170 Estimator : IPW regression adjustment Outcome model : linear Treatment model: logit ------------------------------------------------------------------------------------------ | Robust con_avg7day | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------------+---------------------------------------------------------------- ATE | Stepone | (1 vs 0) | 11004.42 . . . . . -------------------------+---------------------------------------------------------------- POmean | Stepone | 0 | 147907.5 . . . . . ------------------------------------------------------------------------------------------ Warning: convergence not achieved
Code:
corr Stepone pop_perkm2_2019 sexratio_2016 projpercturban_2019 litrate_2011 birthrate_2020 de > athrate_2020 naturalgrwthrate_2020 povertyperct lifeexpectancy_2019 per60_2011 per85_2011 rat > e_hospital_total rate_hospital_beds_total rate_icu_beds_total rate_ventilators_total healthov > er_tot1516 exphealth_percap1516, (obs=1,170) | Telemed pop~2019 sex~2016 projpe~9 lit~2011 bir~2020 dea~2020 nat~2020 povert~t -------------+--------------------------------------------------------------------------------- Stepone | 1.0000 pop_per~2019 | 0.1796 1.0000 sexrati~2016 | -0.1338 -0.3700 1.0000 projper~2019 | 0.0733 0.6693 -0.0099 1.0000 litrate_2011 | -0.0699 0.2397 0.3434 0.6251 1.0000 birthra~2020 | 0.1246 -0.1349 -0.2537 -0.5076 -0.6619 1.0000 deathra~2020 | -0.0882 -0.4177 0.2878 -0.3140 -0.1298 0.2334 1.0000 natural~2020 | 0.1507 -0.0373 -0.3366 -0.4452 -0.6498 0.9709 -0.0056 1.0000 povertyperct | 0.3135 -0.2444 -0.1741 -0.6166 -0.6573 0.7917 -0.0608 0.8273 1.0000 lifeexp~2019 | -0.0698 0.1309 0.3691 0.5561 0.6581 -0.7818 -0.0694 -0.7865 -0.7442 per60_2011 | -0.2089 -0.1317 0.3835 0.2638 0.3118 -0.3689 0.6741 -0.5452 -0.5885 per85_2011 | -0.2844 -0.1978 0.2044 -0.0299 0.3912 -0.3450 0.6277 -0.5053 -0.5162 rate~l_total | -0.1338 -0.2385 0.3027 -0.1600 0.1592 0.0495 0.4694 -0.0611 -0.2226 rate_hospi.. | 0.0635 0.0844 0.4109 0.4591 0.4768 -0.3710 0.3011 -0.4530 -0.5936 rate_icu_b~l | 0.0637 0.0842 0.4106 0.4597 0.4772 -0.3712 0.3009 -0.4531 -0.5937 rate_venti~l | 0.0637 0.0851 0.4109 0.4583 0.4757 -0.3707 0.3022 -0.4529 -0.5933 healtho~1516 | 0.0793 0.7402 -0.1499 0.4915 0.4833 -0.2757 -0.5020 -0.1617 -0.2897 exphe~ap1516 | -0.1489 -0.0039 0.1434 0.2300 0.5613 -0.4064 -0.4401 -0.3100 -0.3535 | lif~2019 per60_~1 per85_~1 ~l_total rate_h.. rate_i~l rate_v~l hea~1516 e~ap1516 -------------+--------------------------------------------------------------------------------- lifeexp~2019 | 1.0000 per60_2011 | 0.4646 1.0000 per85_2011 | 0.4065 0.7139 1.0000 rate~l_total | 0.0029 0.2167 0.3783 1.0000 rate_hospi.. | 0.4761 0.4710 0.2969 0.6785 1.0000 rate_icu_b~l | 0.4760 0.4714 0.2965 0.6779 1.0000 1.0000 rate_venti~l | 0.4765 0.4713 0.2981 0.6791 1.0000 1.0000 1.0000 healtho~1516 | 0.1361 -0.2915 -0.1696 -0.0674 0.1004 0.1006 0.0996 1.0000 exphe~ap1516 | 0.1679 -0.1968 -0.1076 0.1332 0.1790 0.1802 0.1757 0.5225 1.0000
Comment