Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Can I interpret IRR as prevalence ratio?

    Click image for larger version

Name:	Screenshot (1278).png
Views:	1
Size:	194.0 KB
ID:	1717583

    Hula, I'd like to know whether irr can be interpreted as prevalence? I'd like to estimate the prevalence tb mdr cases and using poisson mdr, irr it yields 0.7368. I know this is wrong but how should I obtain the prevalence estimation using poisson regression?

    Thanks

  • #2
    Assuming that mdr is a binary (0/1) variable, then yes: 0.7368 is the sample prevalence (proportion of 1's) and an estimate of the population's prevalence.

    Note that if you're interested only in the point estimate, you don't need a regression model (like Poisson): you can just compute the sample proportion (-help tabulate-).
    At the same time, even if not strictly necessary, any (generalised linear) regression model will do: eg, linear, logistic, log-binomial... (see output below).
    Different story if you are interested in obtaining a valid 95% confidence interval too.

    Code:
    . webuse lbw
    (Hosmer & Lemeshow data)
    
    .
    . // prevalence of low = 1
    . tabulate low
    
    Birthweight |
         <2500g |      Freq.     Percent        Cum.
    ------------+-----------------------------------
              0 |        130       68.78       68.78
              1 |         59       31.22      100.00
    ------------+-----------------------------------
          Total |        189      100.00
    
    .
    . regress low, noheader
    ------------------------------------------------------------------------------
             low | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
           _cons |   .3121693   .0337954     9.24   0.000     .2455025    .3788361
    ------------------------------------------------------------------------------
    
    . poisson low, irr nolog
    
    Poisson regression                                     Number of obs =     189
                                                           LR chi2(0)    =   -0.00
                                                           Prob > chi2   =       .
    Log likelihood = -127.68836                            Pseudo R2     = -0.0000
    
    ------------------------------------------------------------------------------
             low |  Inc. rate   Std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
           _cons |   .3121693    .040641    -8.94   0.000     .2418651    .4029092
    ------------------------------------------------------------------------------
    
    . logit low, nolog
    
    Logistic regression                                    Number of obs =     189
                                                           LR chi2(0)    =   -0.00
                                                           Prob > chi2   =       .
    Log likelihood = -117.336                              Pseudo R2     = -0.0000
    
    ------------------------------------------------------------------------------
             low | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
           _cons |   -.789997    .156976    -5.03   0.000    -1.097664   -.4823297
    ------------------------------------------------------------------------------
    
    . di invlogit(_b[_cons])
    .31216931
    
    . binreg low, rr nolog
    
    Generalized linear models                         Number of obs   =        189
    Optimization     : MQL Fisher scoring             Residual df     =        188
                       (IRLS EIM)                     Scale parameter =          1
    Deviance         =  234.6719962                   (1/df) Deviance =   1.248255
    Pearson          =  188.9999975                   (1/df) Pearson  =   1.005319
    
    Variance function: V(u) = u*(1-u)                 [Bernoulli]
    Link function    : g(u) = ln(u)                   [Log]
    
                                                      BIC             =  -750.7764
    
    ------------------------------------------------------------------------------
                 |                 EIM
             low |       Risk   std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
           _cons |   .3121693   .0337058   -10.78   0.000     .2526292     .385742
    ------------------------------------------------------------------------------
    
    .
    end of do-file

    Comment


    • #3
      Hi, thank you for answering. I forgot to mention that mdr is a variable which consists of three response= 0 (no resistance), 1 (resistant to 1 drug), and 2 (to 2 drug). How am I supposed to interpret this, or would it be better to categorize them all into 2 different cattegories (0=no resistant) (1=resistant)?

      Comment


      • #4
        Originally posted by Zhianni Yang View Post
        would it be better to categorize them all into 2 different cattegories (0=no resistant) (1=resistant)?
        It's impossible for us to tell what the "best" thing to do is. It depends on your research question, which we don't know anything about.

        That said, if mdr is a numeric variable that takes on values 0/1/2, the exponentiated coefficient (constant) from your Poisson model cannot be interpreted as a sample proportion (to be clear: it's *not* equal to the sample proportion of "1 or 2's" or to the sample proportion of "2's", for example). You can check it yourself with the -tabulate- command (see a toy example below).
        0.736... is equal to the sample mean of the mdr variable, which is a meaningless quantity in this case.

        Code:
        . clear
        
        .
        . set seed 44
        
        . set obs 100
        Number of observations (_N) was 0, now 100.
        
        . gen y = rbinomial(1, 0.2) + rbinomial(1, 0.2)
        
        .
        . // Sample proportions
        . tabulate y
        
                  y |      Freq.     Percent        Cum.
        ------------+-----------------------------------
                  0 |         57       57.00       57.00
                  1 |         40       40.00       97.00
                  2 |          3        3.00      100.00
        ------------+-----------------------------------
              Total |        100      100.00
        
        .
        . // NOT sample proportion! 0.46 is equal to the (sample) mean of y
        . poisson y, irr nolog
        
        Poisson regression                                      Number of obs =    100
                                                                LR chi2(0)    =   0.00
                                                                Prob > chi2   =      .
        Log likelihood = -83.799766                             Pseudo R2     = 0.0000
        
        ------------------------------------------------------------------------------
                   y |  Inc. rate   Std. err.      z    P>|z|     [95% conf. interval]
        -------------+----------------------------------------------------------------
               _cons |        .46   .0678233    -5.27   0.000     .3445522    .6141305
        ------------------------------------------------------------------------------
        
        . summarize y
        
            Variable |        Obs        Mean    Std. dev.       Min        Max
        -------------+---------------------------------------------------------
                   y |        100         .46    .5581354          0          2
        
        .
        end of do-file

        Comment

        Working...
        X